Argon Radiation Behind a Strong Shock Wave: Experiment and Direct Simulation by the Monte Carlo Method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The radiation characteristics of shock-heated argon are measured in the shock-wave velocity range of 4.5 to 7.8 km/s at gas pressures ahead of the shock wave front of 0.25, 1.0, and 5.0 Torr. Time-integrated sweeps of radiation and the time dependences of the radiation intensity of shock-heated argon at the wavelength of 420 nm are obtained in absolute units. The results of direct statistical simulation by the Monte Carlo method of radiation-chemical processes in the argon behind the front of a strong shock wave are presented. The model takes into account the processes of excitation and ionization of an atom by electron impact, emission and absorption for a discrete spectrum, bremsstrahlung, photoionization, and photorecombination, as well as the broadening of atomic lines. The experimental and calculated data are compared.

Sobre autores

P. Kozlov

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Moscow, Russia

A. Kusov

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Moscow, Russia

N. Bykov

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Moscow, Russia

I. Zabelinskii

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Moscow, Russia

V. Levashov

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Moscow, Russia

G. Gerasimov

Institute of Mechanics, Moscow State University

Autor responsável pela correspondência
Email: vyl69@mail.ru
Moscow, Russia

Bibliografia

  1. Surzhikov S. // AIAA Paper. 2017. № 2017-1147.
  2. Park C. Nonequilibrium Hypersonic Aerothermodynamics. N.Y.: Wiley, 1990.
  3. Суржиков С.Т. // Хим. физика. 2010. Т. 29. № 7. С. 48.
  4. Johnston C.O., Brandis A.M. // J. Spacecr. Rockets. 2015. V. 52. P. 105.
  5. Суржиков С.Т. Компьютерная аэрофизика спускаемых космических аппаратов. Двухмерные модели. М.: Физматлит, 2018.
  6. Lemal A., Jacobs C.M., Perrin M.-Y. et al. // J. Thermophys. Heat Transfer. 2016. V. 30. P. 197.
  7. Kano K., Suzuki M., Akatsuka H. // Plasma Sources Sci. Technol. 2000. V. 9. P. 314.
  8. Kapper M.G., Cambier J.-L. // J. Appl. Phys. 2011. V. 109. № 113308.
  9. Abrantes R.J.E., Karagozian A.R., Bilyeu D., Le H.P. // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 216. P. 47.
  10. Evdokimov K.E., Konischev M.E., Pichugin V.F., Sun Z. // Resour.-Effic. Technol. 2017. V. 3. P. 187.
  11. Chai K.-B., Kwon D.-H. // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 227. P. 136.
  12. Dzierżęga K., Zawadzki W., Sobczuk F. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 237. № 106635.
  13. Sun J.-H., Sun S.-R., Zhang L.-H., Wang H.-X. // Plasma Chem. Plasma Process. 2020. V. 40. P. 1383.
  14. Козлов П.В., Забелинский И.Е., Быкова Н.Г., Герасимов Г.Я., Левашов В.Ю. // Хим. физика. 2021. Т. 40. № 12. С. 23.
  15. Забелинский И.Е., Козлов П.В., Акимов Ю.В. и др. // Хим. физика. 2021. Т. 40. № 11. С. 22.
  16. Козлов П.В., Забелинский И.Е., Быкова Н.Г. и др. // Хим. физика. 2021. Т. 40. № 8. С. 26.
  17. Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994.
  18. Mewes D., Mayinger F. // Rarefied Gas Dynamics. Heat and Mass Transfer. Berlin: Springer, 2005. P. 275.
  19. Кусов А.Л. // Мат. моделирование. 2015. Т. 27. № 12. С. 33.
  20. Titarev V.A., Frolova A.A., Rykov V.A. et al. // J. Comput. Appl. Math. 2020. V. 364. № 112354.
  21. Beyer J., Pfeiffer M., Fasoulas S. // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 280. № 108083.
  22. Кусов А.Л., Левашов В.Ю., Герасимов Г.Я. др. // Физ.-хим. кинетика в газ. динамике. 2020. Т. 21. № 2. С. 1.
  23. Zatsarinny O., Bartschat K. // J. Phys. B. 2004. V. 37. № 23. P. 4693.
  24. Zatsarinny O., Wang Y., Bartschat K. // Phys. Rev. A. 2014. V. 89. 022706.
  25. Hoshino M., Murai H., Kato H. et al. // Chem. Phys. Lett. 2013. V. 585. P. 33.
  26. Filipović D.M., Marinković B.P., Pejčev V., Vušković L. // J. Phys. B. 2000. V. 33. № 11. P. 2081.
  27. Бай Ши-и. Динамика излучающего газа. М.: Мир, 1968.
  28. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Физматлит, 2008.
  29. Jung Y.-D., Kim C.-G. // J. Plasma Phys. 2002. V. 67. P. 191.
  30. Левашов В.Ю., Козлов П.В., Быкова Н.Г., Забелинский И.Е. // Хим. физика. 2021. Т. 40. № 1. С. 16.
  31. Collen P.L., Doherty L.J., McGilvray M. // Intern. Conf. FAR-2019. 2019. № 1053360.
  32. Bristow M.P.F. // UTIAS. Tech. Rep. № 158. 1971.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (98KB)
3.

Baixar (225KB)
4.

Baixar (192KB)
5.

Baixar (108KB)
6.

Baixar (173KB)
7.

Baixar (76KB)
8.

Baixar (94KB)

Declaração de direitos autorais © П.В. Козлов, А.Л. Кусов, Н.Г. Быкова, И.Е. Забелинский, В.Ю. Левашов, Г.Я. Герасимов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies