Frequency dependencies of electrical characteristics of composite materials based on organosiloxanes and highly dispersed carbon fillers of various shapes
- Authors: Klimova E.I.1, Zhukov V.I.1, Molokanov G.O.1, Molokanova O.O.1, Selyakova D.U.1, Molokanova O.A.1
-
Affiliations:
- Immanuel Kant Baltic Federal University
- Issue: Vol 44, No 11 (2025)
- Pages: 9-15
- Section: Электрические и магнитные свойства материалов
- URL: https://journals.rcsi.science/0207-401X/article/view/351690
- DOI: https://doi.org/10.7868/S0207401X25110023
- ID: 351690
Cite item
Abstract
Composites based on siloxane with additives of hybrid filler in the form of a mixture of spherical and extended carbon structures frequency characteristics are studied by electrometrical method. The effect of the filler type and concentration on the conductive properties of the composites, as well as the behavior of electrical resistance during mechanical stretching, was determined. The introduction of a hybrid filler into the composite significantly changes the value and depending type of electrical conductivity.
About the authors
E. I. Klimova
Immanuel Kant Baltic Federal University
Email: EIKlimova@kantiana.ru
Kaliningrad, Russia
V. I. Zhukov
Immanuel Kant Baltic Federal University
Email: EIKlimova@kantiana.ru
Kaliningrad, Russia
G. O. Molokanov
Immanuel Kant Baltic Federal University
Email: EIKlimova@kantiana.ru
Kaliningrad, Russia
O. O. Molokanova
Immanuel Kant Baltic Federal University
Email: EIKlimova@kantiana.ru
Kaliningrad, Russia
D. U. Selyakova
Immanuel Kant Baltic Federal University
Email: EIKlimova@kantiana.ru
Kaliningrad, Russia
O. A. Molokanova
Immanuel Kant Baltic Federal University
Author for correspondence.
Email: EIKlimova@kantiana.ru
Kaliningrad, Russia
References
- Ameri S.K., Kim M., Kuang I. et al. // Imperceptible electrooculography graphene sensor system for human–robot interface, npj 2D Materials and Applications. 2018. № 2. P. 1. https://doi.org/10.1002/adma.201505124
- Takeshita T., Yoshida M., Takei Y. et al. // Sci Rep. 2019. V. 9. P. 5897. https://doi.org/10.1038/s41598-019-42027-x
- Semenukha O. V., Voronina S. Yu. // Technology of the textile industry. 2023. № 6 (408). P. 241. https://doi.org/10.47367/0021-3497_2023_6_241
- Folorunso O., Hamam Y., Sadiku R. et al. // Polymers. 2019. V. 8. № 11. P. 1250. https://doi.org/10.3390/polym11081250
- Lu C., Liu E., Sun Q., Shao Y. // Polymers. 2024. № 17. P. 2496. https://doi.org/10.3390/polym16172496
- Jang S., Oh J.H. // Sci Rep. 2018. V. 8. P. 1.
- Simbirtseva G.V., Babenko S.D., Kiryukhin D.P., Arbuzov A.A. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 107. https://doi.org/10.31857/S0207401X23010119
- Rogovina S.Z., Gasimov M.M., Lomakin S.M. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1376. https://doi.org/10.31857/S0207401X23110080
- Marinho B., Ghislandi M., Tkalya E. et al. // Powder Technol. 2012. V. 221. P. 351. https://doi.org/10.1016/j.powtec.2012.01.024
- Simbirtseva G.V., Piven N.P., Babenko S.D. // Russ. J. Phys. Chem. B. 2020. V. 14. № 6. P. 980.
- Onggar T., Kruppke I., Cherif C. // Polymers. 2020. V. 12. № 12. P. 2867. https://doi.org/10.3390/polym12122867
- Radzuan N., Sulong A., Sahari J. // Intern. J. Hydrogen Energy. 2017. V. 42. № 14. P. 9262. https://doi.org/10.1016/j.ijhydene.2016.03.045
- Taherian R., Kausar A. Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling, and Applications. Elsevier, 2018. https://doi.org/10.1016/C2016-0-03699-9
- Yang W., Gong Y., Li W. // Front. Bioeng. Biotechnol. 2020. V. 8. P. 622923.
- Vafaiee M., Ejehi F., Mohammadpour R. // Sci Rep. 2023. № 13. P. 370. https://doi.org/10.1038/s41598-023-27690-5
- Ward M.P., Rajdev P., Ellison C., Irazoqui P.P. // Brain Res. 2009. V. 1282. P. 183. https://doi.org/10.1016/j.brainres.2009.05.052
- Obidin N., Tasnim F., Dagdeviren C. // Adv. Mater. 2019. V. 32. № 15. P. 1901482. https://doi.org/10.1002/adma.201901482
- Patil A.C., Thakor N.V. // Med. Biol. Eng. Comput. 2016. V. 54. P. 23. https://doi.org/10.1007/s11517-015-1430-4
- Song E., Li J., Won S.M. et al. // Nat. Mater. 2020. V. 19. P. 590. https://doi.org/10.1038/s41563-020-0679-7
- Zhou Y., Burgoyne Morris G.H., Nair M. // Cell Rep. Phys. Sci. 2024. V. 5. № 8. P. 101852. https://doi.org/10.1016/j.xcrp.2024.101852
- Li Y., Ai Q., Mao L. et al. // Sci. Rep. 2021. V. 11. P. 21006.
- Avanesyan V.T., Puchkov M.Yu. // Izvestiya RSPU named after A. I. Herzen. 2009. № 95. P. 39 [In Russian].
- Luscheikin G.A. Methods for studying the electrical properties of polymers. Moscow: Khimiya, 1998 [In Russian].
- Van Krevelen D.V. Properties of Polymers: Correlations with Chemical Structure. Amsterdam: Elsevier, 1972.
- Blythe A.R. Electrical properties of Polymers. London B.Y.: Cambridge Univ. Press, 1980.
Supplementary files


