The formation of aerosol haze in the atmosphere
- Authors: Pronchev G.B.1, Azriel V.M.1, Akimov V.M.1, Ermolova E.V.1, Kabanov D.B.1, Kolesnikova L.I.1, Rusin L.Y.1, Sevryuk M.B.1, Yermakov A.N.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics
- Issue: Vol 44, No 10 (2025)
- Pages: 81-92
- Section: Химическая физика атмосферных явлений
- URL: https://journals.rcsi.science/0207-401X/article/view/318561
- DOI: https://doi.org/10.7868/S3034612625100083
- ID: 318561
Cite item
Abstract
Keywords
About the authors
G. B. Pronchev
Semenov Federal Research Center for Chemical Physics
Email: pronchev@rambler.ru
Moscow, Russia
V. M. Azriel
Semenov Federal Research Center for Chemical PhysicsMoscow, Russia
V. M. Akimov
Semenov Federal Research Center for Chemical PhysicsMoscow, Russia
E. V. Ermolova
Semenov Federal Research Center for Chemical PhysicsMoscow, Russia
D. B. Kabanov
Semenov Federal Research Center for Chemical PhysicsMoscow, Russia
L. I. Kolesnikova
Semenov Federal Research Center for Chemical PhysicsMoscow, Russia
L. Y. Rusin
Semenov Federal Research Center for Chemical PhysicsMoscow, Russia
M. B. Sevryuk
Semenov Federal Research Center for Chemical PhysicsMoscow, Russia
A. N. Yermakov
Semenov Federal Research Center for Chemical PhysicsMoscow, Russia
References
- Andreae M.O., Jones C.D., Cox P.M. // Nature. 2005. V. 435. № 7046. P. 1187. https://doi.org/10.1038/nature03671
- Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken: John Wiley & Sons, 2016.
- Eganov A.A., Kardonsky D.A., Sulimenkov I.V. et al. // Russ. J. Phys. Chem. B. 2019. V. 17. № 2. P. 503. https://doi.org/10.1134/S1990793123020240
- Larin I.K. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 244. https://doi.org/10.1134/S1990793123010074
- Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 821. https://doi.org/10.1134/S1990793124700246
- Larin I.K., Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 675. https://doi.org/10.1134/S1990793124700258
- Larin I.K., Belyakova T.I., Pronchev G.B., Trofimova E.M. // Adv. Chem. Phys. 2025. V. 44. № 5. P. 40. https://doi.org/10.31857/S0207401X25050051
- Larin I.K., Pronchev G.B., Trofimova E.M. // Adv. Chem. Phys. 2025. V. 44. № 5. P. 49. https://doi.org/10.31857/S0207401X25050066
- Pronchev G.B., Yermakov A.N. // Atmos. Ocean. Opt., 2025. V. 38. № 4. P. 401. https://doi.org/10.1134/S102485602570023X
- Larin I.K. // Adv. Chem. Phys. 2025. V. 44. № 6. P. 109. https://doi.org/10.31857/S0207401X25060097
- Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2025. V. 19. № 3. P. 770. https://doi.org/10.1134/S1990793125700460
- Wang Y., Zhang Q., Jiang J. et al. // J. Geophys. Res. Atmos. 2014. V. 119. № 17. P. 10425. https://doi.org/10.1002/2013JD021426
- Liu T., Clegg S.L., Abbatt J.P.D. // Proc. Natl. Acad. Sci. 2020. V. 117. № 3. P. 1354. https://doi.org/10.1073/pnas.1916401117
- Liu P., Ye C., Xue C. et al. // Atmos. Chem. Phys. 2020. V. 20. № 7. P. 4153. https://doi.org/10.5194/acp-20-4153-2020
- Vinogradova A.A., Gubanova D.P., Iordanskii M.A., Skorokhod A.I. // Atmospheric and Oceanic Optics. 2022. V. 35. № 6. P. 758. https://doi.org/10.1134/S1024856022060276
- Yausheva E.P., Gladkikh V.A., Kamardin A.P., Shmargunov V.P. // Atmospheric and Oceanic Optics. 2023. V. 36 (S1). P. S65. https://doi.org/10.1134/S1024856024010147
- Sirois A., Barrie L.A. // J. Geophys. Res. Atmos. 1999. V. 104. № 9. P. 11599. https://doi.org/10.1029/1999JD900077
- Liu M., Song Y., Zhou T. et al. // Geophys. Res. Lett. 2017. V. 44. № 10. P. 5213. https://doi.org/10.1002/2017GL073210
- Zheng B., Zhang Q., Zhang Y. et al. // Atmos. Chem. Phys. 2015. V. 15. № 4. P. 2031. https://doi.org/10.5194/acp-15-2031-2015
- Brimblecombe P. The Big Smoke: A History of air pollution in London since medieval time. New York: Routledge, 2011.
- Grieken R.W. Optimization and environmental application of TW-EPMA for single particle analysis. Antwerpen: Antwerpen University, 2005.
- Wang G., Zhang R., Gomez M.E. et al. // Proc. Natl. Acad. Sci. 2016. V. 113. № 48. P. 13630. https://doi.org/10.1073/pnas.1616540113
- Fountoukis C., Nenes A. // Atmos. Chem. Phys. 2007. V. 7. № 17. P. 4639. https://doi.org/10.5194/acp-7-4639-2007
- Wexler A.S., Clegg S.L. // J. Geophys. Res. Atmos. 2002. V. 107. № D14. P. 3173. https://doi.org/10.1029/2001JD000451
- Yermakov A.N., Aloyan A.E., Arutyunyan V.O. // Russ. Meteorol. Hydrol. 2021. V. 46. № 11. P. 762. https://doi.org/10.3103/S1068373921110054
- Mozurkewich M. // Atmos. Environ. Part A. Gen. Top. 1993. V. 27. № 2. P. 261. https://doi.org/10.1016/0960-1686(93)90356-4
- Jacobson M.Z., Tabazadeh A., Turco R.P. // J. Geophys. Res. Atmos. 1996. V. 101. № D4. P. 9079. https://doi.org/10.1029/96JD00348
- Swietlicki E., Hansson H.C., Hämeri K. et al. // Tellus, B: Chem. Phys. Meteorol. 2008. V. 60. № 3. P. 432. https://doi.org/10.1111/j.1600-0889.2008.00350.x
- Petters M.D., Kreidenweis S.M. // Atmos. Chem. Phys. 2007. V. 7. № 8. P. 1961. https://doi.org/10.5194/acp-7-1961-2007
- Berresheim H., Jaeschke W. // J. Atmos. Chem. 1986. V. 4. № 3. P. 311. https://doi.org/10.1007/BF00053807
- Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2024. V. 18. № 5. P. 1422. https://doi.org/10.1134/S1990793124701148
- Ibusuki T., Takeuchi K. // Atmos. Environ. 1987. V. 21. № 7. P. 1555. https://doi.org/10.1016/0004-6981(87)90317-9
- Feichter J., Kjellström E., Rodhe H. et al. // Atmos. Environ. 1996. V. 30. № 10–11. P. 1693. https://doi.org/10.1016/1352-2310(95)00394-0
- Alexander B., Park R.J., Jacob D.J., Gong S. // J. Geophys. Res. Atmos. 2009. V. 114. № D2. P. 1. https://doi.org/10.1029/2008JD010486
- He P., Alexander B., Geng L. et al. // Atmos. Chem. Phys. 2018. V. 18. № 8. P. 5515. https://doi.org/10.5194/acp-18-5515-2018
- McCabe J.R., Savarino J., Alexander B., Gong S., Thiemens M.H. // Geophys. Res. Lett. 2006. V. 33. № 5. P. 10. https://doi.org/10.1029/2005GL025164
- Martin L.R., Hill M.W. // Atmos. Environ. 1987. V. 21. № 10. P. 2267. https://doi.org/10.1016/0004-6981(87)90361-1
- Yermakov A.N. // Kinet. Catal. 2022. V. 63. № 2. P. 157. https://doi.org/10.1134/S0023158422020021
- Baranova R.B., Bugaenko L.T., Ivanina I.N., Kostenko N.N., Starodubtsev G.A. // Khim. Vysok. Energ. 1982. V. 16. № 3. P. 234.
- Yermakov A.N. // Kinet. Catal. 2023. V. 64. № 1. P. 74. https://doi.org/10.1134/S0023158423010019
- Brandt C., van Eldik R. // Chem. Rev. 1995. V. 95. № 1. P. 119. https://doi.org/10.1021/cr00033a006
- Herrmann H., Ervens B., Jacobi H.W. et al. // J. Atmos. Chem. 2000. V. 36. № 3. P. 231. https://doi.org/10.1023/A:1006318622743
- Berglund J., Fronaeus S., Elding L.I. // Inorg. Chem. 1993. V. 32. № 21. P. 4527. https://doi.org/10.1021/ic00073a011
- Wang H. The chemistry of nitrate radical (NO3) and dinitrogen pentoxide (N2O5) in Beijing. Singapore: Springer Nature Singapore Pte Ltd, 2021. https://doi.org/10.1007/978-981-15-8795-5
- Schwartz S.E. // SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations / Ed. Calvert J.G. Boston: Butterworth, 1984. P. 173.
Supplementary files
