Converging cylindrical detonation wave: numerical modeling and experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerical modeling of formation and propagation of detonation wave with concave curvature was conducted in present work. The modeling follows experiments where detonation of cylindrical explosive charge is initiated by multiple 3D-printed initiation modules. Specific experiments were used to adjust parameters of the equation of state of charge explosive and of lenses material employed. The modeling has revealed main features in performance of single initiation module and of an initiation module installed in an experimental setup. Possibility of formation of “smooth” converging detonation wave was confirmed empirically.

About the authors

V. G. Sultanov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: sultan@ficp.ac.ru
Chernogolovka, Russia

S. V. Dudin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: sultan@ficp.ac.ru
Chernogolovka, Russia

V. A. Sosokov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: sultan@ficp.ac.ru
Chernogolovka, Russia

S. I. Torunov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: sultan@ficp.ac.ru
Chernogolovka, Russia

E. V. Vasilenok

Moscow Institute of Physics and Technology

Email: sultan@ficp.ac.ru
Dolgoprudny, Russia

D. Y. Rapota

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: sultan@ficp.ac.ru
Chernogolovka, Russia

A. V. Razmyslov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Author for correspondence.
Email: sultan@ficp.ac.ru
Chernogolovka, Russia

References

  1. Medvedev S.P., Khomik S.V., Maximova O.G. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 962 https://doi.org/10.1134/S1990793123040279
  2. Medvedev S.P., Ivantsov A.N., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B V. 16. № 6. P. 1137. https://doi.org/10.1134/S1990793122060197
  3. Zeldovich Ya.B. // JETP. 1942. V. 12. № 9. P. 389
  4. Dudin S.V., Sosikov V.A., Torunov S.I. // J. Phys.: Conf. Ser. 2017. V. 946. 012057. https://doi.org/10.1088/1742-6596/946/1/012057
  5. Shutov A.V., Sultanov V.G., Dudin S.V. // J. Phys.: Conf. Ser. 2016. V. 774. 012075. https://doi.org/10.1088/1742-6596/774/1/012075
  6. Sosikov V.A., Torunov S.I., Dudin S.V. // J. Phys.: Conf. Ser. 2018. V. 1147. 012027. https://doi.org/10.1088/1742-6596/1147/1/012027
  7. Dudin S.V., Sosikov V.A., Torunov S.I. // J. Phys.: Conf. Ser. 2016. V. 774. 012074. https://doi.org/10.1088/1742-6596/774/1/012074
  8. Gubachev V.A., Bondarenko N.M., Fillipov V.A., Galkin E.A. Device to generate blast wave. Patent RU2451895C1. Russia // 2012.
  9. Krutik M.I., Arinin V.A., Ткаченко B.I., Dudin S.V. // Combustion and explosion. 2024. V. 17. № 2. P. 78. https://doi.org/10.30826/CE24170212
  10. Heylmun J., Vonk P., Brewer T. blastFoam: An OpenFOAM Solver for Compressible Multi-Fluid Flow with Application to High-Explosive Detonation. Synthetik Applied Technologies LLC. 2019.
  11. Heylmun J., Vonk P., Brewer T. blastFoam User Guide. Synthetik Applied Technologies LLC. 2019.
  12. Utkin A.V., Mochalova V.M., Torunov S.I. // Russ. J. Phys. Chem. B. 2011. V. 5. № 3. P. 513.
  13. Ermolaev B.S., Komissarov P.V., Basakina S.S., Lav­rov V.V. // Russ. J. Phys. Chem. B 2023. V. 17. № 5. P. 1143. https://doi.org/10.1134/S1990793123050020
  14. Ermolaev B.S., Komissarov P.V., Basakina S.S., Lav­rov V.V. // Russ. J. Phys. Chem. B 2024. V. 18. № 2. P. 494. https://doi.org/10.1134/S1990793124020076
  15. Dobratz B.M. LLNL Explosive Handbook: Properties of Chemical Explosives and Explosive Simulants. L.: LLNL. 1981.
  16. Sultanov V.G., Dudin S.V., Sosikov V.A. et al. // Combust. Explos. Shock Waves. 2023. V. 59. № 4. P. 516. https://doi.org/10.1134/S0010508223040159
  17. Dudin S.V., Sosikov V.A., Torunov S.I. // Combust. Explos. Shock Waves. 2019. V. 55. № 4. P. 507. https://doi.org/10.1134/S0010508219040191

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).