Shock initiation of detonation in a mixture of gelled nitromethane with microballoons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using a multichannel laser interferometer, a series of experiments with recording of particle velocity profiles have been carried out to determine the dynamics of shock initiation of detonation in the mixtures of nitromethane with microballoons, which are heterogeneous explosives with a controlled charge structure. It is shown that the addition of 5–8 wt.% microballoons to nitromethane reduces the shock wave amplitude required to initiate detonation by almost an order of magnitude. At 8 wt.% of microballoons, depending on the initiation conditions, the realization of both steady Chapman-Jouguet detonation and weak detonation is observed.

About the authors

M. Y. Shakula

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry; Moscow Institute of Physics and Technology

Email: utkin@icp.ac.ru
Chernogolovka, Moscow region, Russia; Dolgoprudnyy, Moscow region, Russia

A. V. Utkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: utkin@icp.ac.ru
Chernogolovka, Moscow region, Russia

V. M. Mochalova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: utkin@icp.ac.ru
Chernogolovka, Moscow region, Russia

V. V. Lavrov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: utkin@icp.ac.ru
Chernogolovka, Moscow region, Russia

A. V. Savchenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: utkin@icp.ac.ru
Chernogolovka, Moscow region, Russia

V. V. Vilkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry; Lomonosov Moscow State University

Author for correspondence.
Email: utkin@icp.ac.ru
Chernogolovka, Moscow region, Russia; Moscow, Russia

References

  1. Lee J.J., Frost D.L., Lee J.H.S., Dremin A. // Shock Waves. 1995. V. 5. № 1–2. P. 115.
  2. Presles H.N., Vidal P., Gois J.C., Khasainov B.A., Ermolaev B. S. // Shock Waves. 1995. V. 4. № 6. P. 325.
  3. Satonkina N.P., Ershov A.P., Kashkarov A.O., Rubtsov I.A. // RSC adv. 2020. V. 10. № 30. P. 17620.
  4. Yunoshev A.S., Plastinin A.V., Rafeichik S.I. // Combust. Explos. Shock Waves. 2017. V. 53. P. 738.
  5. Yang M., Ma H., Shen Z. // J. Energ. Mater. 2019. V. 37. № 4. P. 459.
  6. Busby T., Smith J., Sheehan P., Oxley J. // Propellants, Explos., Pyrotech. 2023. V. 48. №8. P. e202200324.
  7. Lavrov V.V., Zubareva A.N., Komissarov P.V. // Russ. J. Phys. Chem. B. 2019. V. 13. № 4. P. 603.
  8. Dattelbaum D.M., Sheffield S.A., Stahl D.B. et al. // Proc. 14th Intern. Detonation Sympos. Arlington, VA, USA: Office of Naval Research, 2010. P. 611.
  9. Engelke R. // Phys. Fluids. 1979. V. 22. № 9. P. 1623.
  10. Khasainov B.A., Ermolaev B.S., Presles H.N. // Tenth Intern. Sympos. on Detonation. Arlington, VA, USA: Office of Naval Research, 1993. P. 33395.
  11. Sabourin J.L., Yetter R.A., Asay B.W. et al. // Propellants, Explos., Pyrotech. 2009. V. 34. № 5. P. 385.
  12. Gois J.C., Campos J., Mendes R. // Proc. Conf. Amer. Phys. Soc. on Shock Compression of Condensed Matter. V. 2. Seattle, Washington: AIP Press, 1996. P. 827.
  13. Mochalova V., Utkin A., Shakula M., Lavrov V. // Phys. Fluids. 2023. V. 35. № 1. P. 017117.
  14. Higgins A., Loiseau J., Mi X.C. // AIP Conf. Proc. 2018. V. 1979. № 1. P. 100019.
  15. Kondrikov B.N., Kozak G.D., Oblomskii V.B., Sav­kin A.V. // Combust., Explos., Shock Waves. 1987. V. 23. № 2.
  16. Mochalova V., Utkin A., Shakula M. et al. // Phys. Fluids. 2024. V. 36. № 2. P. 026112.
  17. Mochalova V., Utkin A., Shakula M. et al. // Phys. Fluids. 2021. V. 33. № 4. P. 046108.
  18. Dremin A.N., Savrov S.D., Trofimov V.S., Shvedov K.K. Detonation Waves in Condensed Media. Moscow: Nauka, 1970.
  19. Chaiken R.F. // J. Chem. Phys. 1960. V. 33. № 3. P. 760.
  20. Sheffield S.F., Weese R.K., Wardell J.F. et al. // Proc. 13th Intern. Deton. Sympos. Arlington, VA, USA: Office of Naval Research, 2006. P. 401.
  21. Bouyer V., Darbord I., Hervé P. et al. // Combust. Flame. 2006. V. 144. № 1–2. P. 139.
  22. Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Shock-Wave Phenomena in Condensed Media. Moscow: “Yanus-K”,1996.
  23. Mader C.L. Numerical modeling of detonations. Los Alamos Series in Basic and Applied Sciences, 1979.
  24. Utkin A., Mochalova V., Zubareva A. et al. // Propellants, Explos., Pyrotech. 2022. V. 47. № 9. e202200051.
  25. Utkin A.V., Mochalova V.M., Rogacheva A.I., Yaku­shev V.V. // Combust., Explos., Shock Waves. 2017. V. 53. № 2. P. 199.
  26. Wang Z., Xue K., Mi X. // Phys. Fluids. 2024. V. 36. № 2. P. 023336.
  27. Ermolaev B.S., Sulimov A.A. Convective Combustion and Low-Speed Detonation of Porous Energy Materials. Torus Press Moscow. 2017.
  28. Ermolaev B.S. Belyaev A.A., Roman’kov A.V. et al. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 646.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).