Kinetic features of non-thermal plasma conversion of propane-air mixture at high pressure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of modeling the conversion of a lean non-combustible propane-air mixture with initiation by a high-frequency corona discharge at a pressure of 5 bar and an initial temperature of 300 K for different equivalence ratios. The discharge creates non-thermal plasma in filament channels. Experiments on the development of such a discharge in air for different conditions were carried out. At pressures of 1 and 2 bar, the discharge has a complex morphology with branching of discharge filaments. At pressures above 3 bar, the glow region has the shape of a straight spoke. The paper presents a kinetic analysis of the conversion. The key component for propane decomposition is the O atom produced in the discharge as a result of O2 dissociation by direct electron impact and excited N2 molecules. In the afterglow, after completion of discharge, the source of the O atom is the reactions of ozone decomposition with N2 and O2. For the formation of NO, it is necessary to take into account the production of N atoms in the excited and ground states. Intermediate oxidized hydrocarbons play a major role in increasing the concentrations of C3H6, C2H4, and CO over time. The decomposition of O3 occurs to a greater extent in a cycle involving NO3. The heating of the discharge-activated zone did not exceed 600 K. The composition of the conversion products obtained as a result of modeling was compared with known experimental literature data.

About the authors

E. A. Filimonova

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: helfil@mail.ru
Moscow, Russia

I. V. Selivonin

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: helfil@mail.ru
Moscow, Russia

I. A. Moralev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: helfil@mail.ru
Moscow, Russia

A. S. Dobrovolskaya

Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: helfil@mail.ru
Moscow, Russia

References

  1. Bellenoue M., Labuda S., Ruttun B., Sotton J. // Combust. Scien. Technol. 2007. V. 179. P. 477.
  2. Reitz R.D. // Combust. Flame. 2013. V. 160. P. 1. http://dx.doi.org/10.1016/j.combustflame.2012.11.002
  3. Discepoli G., Cruccolini V., Ricci F. et al. // Appl. Energy. 2020. V. 263. 114617. https://doi.org/10.1016/j.apenergy.2020.114617
  4. Hampe C., Bertsch M., Beck K.W. et al. // SAE. 2013. 2013-32-9144.
  5. Burrows J. and Mixell K. // Ignition Systems for Gasoline Engines / Eds. Günther M., Sens M. Switzerland: Inter. Publ. Springer, 2017. P. 268. https://doi.org/10.1007/978-3-319-45504-4_17
  6. Schenk A., Rixecker G., Bohne S. Third Laser Ignition Conference (LIC). US, 2015. Paper W4A.4.
  7. Xu D.A., Lacoste D.A., Laux C.O. // Plasma Chem. Plasma Proces. 2016. V. 36. P. 309. https://doi.org/10.1007/s11090-015-9680-3
  8. Ju Y., Sun W. // Progr. Energy Combust. Scien. 2015. V. 48. P. 21. http://dx.doi.org/10.1016/j.pecs.2014.12.002
  9. Filimonova E., Bocharov A. Bityurin V. // Fuel. 2018. V. 228. P. 309. https://doi.org/10.1016/j.fuel.2018.04.124
  10. Filimonova E.A., Bocharov A.N., Dobrovolskaya A.S., Bityurin V.A. // Plasma Chem. Plasma Proces. 2019. V. 39. № 3. P. 683. https://doi.org/10.1007/s11090-019-09964-x
  11. Tsolas N., Lee J.G., Yetter R.A. // Philosoph. Transact. Royal Soc. A. 2015. V. 373. 20140344. http://dx.doi.org/10.1098/rsta.2014.0344
  12. Tsolas N., Yetter R.A. // Combust. Flame. 2017. V. 176. P. 534. http://dx.doi.org/10.1016/j.combustflame.2016.10.022
  13. Tsolas N., Yetter R.A., Adamovich I.V. // Ibid. 2017. V. 176. P. 462. http://dx.doi.org/10.1016/j.combustflame.2016.10.023
  14. Filimonova E.A. // J. Phys. D: Appl. Phys. 2015. V. 48. 015201. https://doi.org/10.1088/0022-3727/48/1/015201
  15. Ban Y., Zhong Sh., Zhu J., Zhang F. // Fuel. 2023. V. 339. 127353. https://doi.org/10.1016/j.fuel.2022.127353
  16. Wang L., Yu X., Zheng M. // IEEE Transact. Plasma Scien. 2021. V. 49. No. 1. P. 326. https://doi.org/10.1109/TPS.2020.3041635
  17. Yu X., Wang L., Yu S., Wang M., Zheng M. // Plasma Sources Sci. Technol. 2022. V. 31. 055004. https://doi.org/10.1088/1361-6595/ac5f21
  18. Pipa A.V., Koskulics J., Brandenburg R., Hoder T. // Rev. Sci. Instrum. 2012. V. 83. № 11. P. 115112. https://doi.org/10.1063/1.4767637
  19. Pashin M.M., Lisov N.Yu. // Electricity. 2011. № 1. P. 21. [In Russian].
  20. Kriegseis J., Möller B., Grundmann S., Tropea C. // J. Electrostat. 2011. V. 69. № 4. P. 302. http://dx.doi.org/10.1016/j.elstat.2011.04.007
  21. Lisov N.Yu. // Electricity. 2016. № 10. P. 28. [In Rus­sian].
  22. Orlov D.M., Corke T.C. // Proc. 44th AIAA Aerospace Sci. Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2006. P. AIAA 2006-1206. https://doi.org/10.2514/6.2006-1206
  23. Filimonova E.A., Dobrovolskaya A.S., Bocharov A.N., Bityurin V.A., Naidis G.V. // Combust. Flame. 2020. V. 215. P. 401. https://doi.org/10.1016/j.combustflame.2020.01.029
  24. Filimonova E.A., Dobrovolskaya A.S. // High Temperature. 2023. V. 61. № 3. P. 311. https://doi.org/ 10.1134/S0018151X23030082
  25. Auzas F., Tardiveau P., Puech P., Makarov M, Agne­ray A. // J. Phys. D: Appl. Phys. 2010. V. 43. 495204. https://doi.org/10.1088/0022-3727/43/49/495204
  26. Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722.
  27. Babaeva N.Yu., Naidis G.V. // J. Phys. D: Appl. Phys. 1996. V. 29. P. 2423.
  28. Filimonova E.A., Dobrovolskaya A.S. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1285. https://doi.org/ 10.1134/S1990793123060167
  29. Filimonova E.A., Kim Y., Hong S.H., Song Y.H. // J. Phys. D: Appl. Phys. 2002. V. 35. P. 2795.
  30. Zheleznyak M.B., Filimonova E.A. // High Temperature. 1998. V. 36. № 4. P. 533.
  31. Herron J.T. // J. Phys. Chem. Ref. Data. 1999. V. 28. № 5. P. 1453.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».