Study of fluorescence quenching by bilirubin of carbocyanine dye in complex with DNA. Effect of Cu2+ additives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of bilirubin on the spectral fluorescence properties of the cationic thiacarbocyanine dye Cyan 2 in the presence of DNA was studied. The Cyan 2 dye forms a non-covalent complex with DNA, which leads to an increase in the fluorescence of the dye. Interaction with bilirubin leads to effective quenching of dye fluorescence in complex with DNA (static mechanism), which can be used to construct a spectral-fluorescent sensor for bilirubin. The results of in vitro experiments are illustrated by in silico molecular docking experiments. The effect of Cu2+ ion additives can further enhance the quenching of dye fluorescence by bilirubin. Effective quenching constants and detection limits of bilirubin using the Cyan 2–DNA system (LOD and LOQ) are determined.

About the authors

P. G. Pronkin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: pronkinp@gmail.com
Moscow, Russia

A. S. Tatikolov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: pronkinp@gmail.com
Moscow, Russia

References

  1. Pronkin P.G., Tatikolov A.S. // Molecules. 2022. V. 27. № 19. P. 6367. https://doi.org/10.3390/molecules27196367
  2. Tatikolov A.S., Pronkin P.G., Shvedova L.A., Panova I.G. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 900. https://doi.org/10.1134/S1990793119060290
  3. Kim S.Y., Park S.C. // Front. Pharmacol. 2012. V. 3. P. 45. https://doi.org/10.3389/fphar.2012.00045
  4. Tatikolov A.S., Panova I.G. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1473. https://doi.org/10.1134/S1990793124701173
  5. Soto Conti C.P. // Arch. Argent. Pediatr. 2021. V. 119. № 1. P. e18. https://doi.org/10.5546/aap.2021.eng.e18
  6. Tatikolov A.S., Pronkin P.G., Panova I.G. // Biophys. Chem. 2025. V. 318. P. 107378. https://doi.org/10.1016/j.bpc.2024.107378
  7. Singla N., Ahmad M., Mahajan V., Singh P., Kumar S. // Sens. Diagn. 2023. V. 2. P. 1574. http://dx.doi.org/10.1039/D3SD00157A
  8. Karmakar S., Das T.K., Kundu S., Maiti S., Saha A. // ACS Appl. Bio Mater. 2020. V. 3. P. 8820. https://doi.org/10.1021/acsabm.0c01165
  9. Xiao W., Liu J., Xiong Y., et al. // Anal. Bioanal. Chem. 2021. V. 413. P. 7009. https://doi.org/10.1007/s00216-021-03660-6
  10. Speck W., Behrman R. // Pediatr. Res. 1974. V. 8. P. 451. https://doi.org/10.1203/00006450-197404000-00665
  11. Velapoldi R.A., Menis O. // Clinical Chem. 1971. V. 17. № 12. P. 1165.
  12. PMID: 5118155
  13. Asad S.F., Singh S., Ahmad A., Hadi S.M. // Biochim. Biophys. Acta. 1999. V. 1428. № 2–3. P. 201. https://doi.org/10.1016/s0304-4165(99)00075-6
  14. Asad S.F., Singh S., Ahmad A., Hadi S.M. // Toxicology Lett. 2002. V. 131. № 3. P. 181. https://doi.org/10.1016/s0378-4274(02)00031-0
  15. Akimkin T.M., Tatikolov A.S., Yarmoluk S.M. // High Energy Chem. 2011. V. 45. P. 222. https://doi.org/10.1134/S0018143911030027
  16. Y armoluk S.M., Lukashov S.S., Losytskyy M.Y., Aker­man B., Kornyushyna O.S. // Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy. 2002. V. 58. № 14. P. 3223. https://doi.org/10.1016/S1386-1425(02)00100-2
  17. Xu C., Losytskyy M.Y., Kovalska V.B., Kryvorotenko D.V., Yarmoluk S.M., McClelland S., Bianco P.R. // J. Fluoresc. 2007. V. 17. P. 671. https://doi.org/10.1007/s10895-007-0215-z
  18. Tatikolov A.S., Akimkin T.M., Pronkin P.G., Yarmo­luk S.M. // Chem. Phys. Lett. 2013. V. 556. P. 287. https://doi.org/10.1016/j.cplett.2012.11.097
  19. Mukerjee P., Ostrow J.D., Tiribelli C. // BMC Biochem. 2002. V. 3. P. 17. https://doi.org/10.1186/1471-2091-3-17
  20. Baguley B.C., Falkenhaug E.M. // Nucleic Acids Res. 1978. V. 5. № 1. P. 161. https://doi.org/10.1093/nar/5.1.161
  21. Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. Springer, 2006. 954 p.
  22. Hubaux A., Vos G. // Anal. Chem. 1970. V. 42. No. 8. P. 849. https://doi.org/10.1021/ac60290a013
  23. MacDougall D., Crummett W.B. et al. // Anal. Chem. 1980. V. 52. P. 2242. https://doi.org/10.1021/ac50064a004
  24. Valdes-Tresanco M.S., Valdes-Tresanco M.E., Valiente P.A., Moreno E. // Biol. Direct. 2020. V. 15. P. 12. https://doi.org/10.1186/s13062-020-00267-2
  25. Drew H.R., Wing R.M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R.E. // Proc. Natl. Acad. Sci. USA. 1981. V. 78. P. 2179. https://doi.org/10.1073/pnas.78.4.2179
  26. Dautant A., Langlois d’Estaintot B., Gallois B., Brown T., Hunter W.N. // Nucleic Acids Res. 1995. V. 23. P. 1710. https://doi.org/10.1093/nar/23.10.1710
  27. Yang Z., Lasker K., Schneidman-Duhovny D., Webb B., Huang C.C., Pettersen E.F., Goddard T.D., Meng E.C., Sali A., Ferrin T.E. // J. Struct. Biol. 2012. V. 179. P. 269. https://doi.org/10.1016/j.jsb.2011.09.006
  28. Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. // J. Cheminformatics. 2012. V. 4. P. 1. https://doi.org/10.1186/1758-2946-4-17
  29. Pronkin P.G., Shvedova L.A., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 369. https://doi.org/10.1134/S1990793124020155
  30. Pronkin P.G., Tatikolov A.S. // High Energy Chemistry. 2009. V. 43. № 6. P. 471. https://doi.org/10.1134/S0018143909060101
  31. Pronkin P.G., Tatikolov A.S. // High Energy Chemistry. 2011. V. 45. № 2. P. 140. https://doi.org/10.1134/S0018143911020123
  32. Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2022. V. 16. № 1. P. 1. https://doi.org/10.1134/S1990793122010262
  33. Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 25. https://doi.org/10.1134/S1990793121010267
  34. Yarmoluk S.M., Lukashov S.S., Ogul’chansky T.Y., Losytskyy M.Y., Kornyushyna O.S. // Biopolymers (Biospectroscopy). 2001. V. 62. P. 219. https://doi.org/10.1002/bip.1016
  35. Galhano J., Marcelo G.A., Santos H.M., Capelo-Martínez J.L., Lodeiro C., Oliveira E. // Chemosensors. 2022. V. 10. P. 80. https://doi.org/10.3390/chemosensors10020080
  36. Hanmeng O., Chailek N., Charoenpanich A. et al. // Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy. 2020. V. 240. P. 118606. https://doi.org/10.1016/j.saa.2020.118606
  37. Chen X., Nam S.W., Kim G.H. et al. // Chem. Commun. 2010. V. 46. № 47. P. 8953. http://dx.doi.org/10.1039/C0CC03398G
  38. Li J., Ge J., Zhang Z., Qiang J., Wei T., Chen Y., Li Z., Wang F., Chen X. // Sensor Actuat B-Chem. 2019. V. 296. P. 126578. https://doi.org/10.1016/j.snb.2019.05.055
  39. Krishna R.M., Gupta S.K. // Bull. Magnetic Resonance. 1994. V. 16. № 3. P. 239.
  40. Taniguchi M., Lindsey J.S. // J. Photochem. Photobiol. C. 2023. V. 55. P. 100585. https://doi.org/10.1016/j.jphotochemrev.2023.100585
  41. Ghosh D., Chattopadhyay N. // J. Luminesc. 2015. V. 160. P. 223. https://doi.org/10.1016/j.jlumin.2014.12.018
  42. Achyuthan K.E., Bergstedt T.S., Chen L. // J. Materials Chem. 2005. V. 15. № 27–28. P. 2648. https://doi.org/10.1039/b501314c
  43. Poletaev A.I. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1168. https://doi.org/10.1134/S1990793123050093
  44. Tereshkin E.V., Tereshkina K.B., Loiko N.G. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1604. https://doi.org/10.1134/S199079312470146X
  45. Razumov W.F. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 36. https://doi.org/10.1134/S199079312301027X

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).