Thermodynamics of sublimation and the effect of aggregation on the electronic absorption spectra of etioporphyrins Cu-etiop-III and VO-etiop-III
- Authors: Eroshin A.V.1, Zhabanov Y.A.1,2, Stuzhin P.A.1, Pakhomov G.L.1,2
-
Affiliations:
- Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology
- Institute for Physics of Microstructures of the Russian Academy of Sciences
- Issue: Vol 44, No 5 (2025)
- Pages: 76-87
- Section: Динамика фазовых переходов
- URL: https://journals.rcsi.science/0207-401X/article/view/295123
- DOI: https://doi.org/10.31857/S0207401X25050092
- ID: 295123
Cite item
Abstract
In this paper, a comparative experimental and theoretical study of two etioporphyrin complexes (Cu-EtioP-III and VO-EtioP-III) with transition metals is carried out. The sublimation enthalpies of Cu-EtioP-III and VO-EtioP-III were determined to be 145(3) kJ/mol and 195(5) kJ/mol, respectively using the Knudsen effusion method with mass spectrometric control of the vapor composition. The electronic absorption spectra of vacuum-sublimated Cu-EtioP-III layers were simulated using TD-DFT calculations for mono-, di-, tetra- and hexameric forms with the geometric structure corresponding to the crystal unit cell. Comparison of the results with similar data for VO-EtioP-III allows us to draw conclusions about the ability of the simplest natural porphyrinoids to form intermolecular bonds during aggregation (in thin layers, crystals).
Full Text

About the authors
A. V. Eroshin
Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology
Author for correspondence.
Email: eroshin_av@isuct.ru
Russian Federation, Ivanovo
Yu. A. Zhabanov
Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology; Institute for Physics of Microstructures of the Russian Academy of Sciences
Email: eroshin_av@isuct.ru
Russian Federation, Ivanovo; Nizhny Novgorod
P. A. Stuzhin
Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology
Email: eroshin_av@isuct.ru
Russian Federation, Ivanovo
G. L. Pakhomov
Research Institute of Chemistry of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology; Institute for Physics of Microstructures of the Russian Academy of Sciences
Email: eroshin_av@isuct.ru
Russian Federation, Ivanovo; Nizhny Novgorod
References
- Senge M.O., Sergeeva N.N., Hale K.J. // Chem. Soc. Rev. 2021. V. 50. P. 4730. https://doi.org/10.1039/c7cs00719a
- Koifman O.I., Stuzhin P.A., Travkin V.V., Pakhomov G.L. // RSC Adv. 2021. V. 11. № 25. P. 15131. https://doi.org/10.1039/d1ra01508g
- Cherepanov D.A., Milanovskii G.E., Aibush A.V. et al. // Khim. Fizika. 2023. V. 42. № 6. P. 77. https://doi.org/10.31857/S0207401X23060031
- Basova T.V., Belykh D.V., Vashurin A.S., Klyamer D.D., Koifman O.I., Krasnov P.O., Lomova T.N., Loukhina I.V., Motorina E.V., Pakhomov G.L., Polyakov M.S., Semeikin A.S., Stuzhin P.A. et al. // J. Struct. Chem. 2023. V. 64. № 5. P. 1. https://doi.org/10.1134/S0022476623050037
- Senge M.O., Davis M. // J. Porphyrins Phthalocyanines. 2010. V. 14. № 7. P. 557. https://doi.org/10.1142/S1088424610002495
- Koifman O.I., Koptyaev A.I., Travkin V.V., Yunin P.A., Somov N.V., Masterov D.V., Pakhomov G.L. // Colloids Interfaces. 2022. V. 6. № 4. P. 77. https://doi.org/10.3390/colloids6040077
- Ngo H.T., Minami K., Imamura G. et al. // Sensors. 2018. V. 18. № 5. P. 1640. https://doi.org/10.1142/S1088424610002495
- Burtsev I.D., Egorov A.E., Kostyukov A.A. et al. // Khim. Fizika. 2022. V. 41. № 2. P. 41. https://doi.org/10.31857/S0207401X22020029
- Povolotskii A.V., Soldatova D.A., Lukyanov D.A. et al. // Khim. Fizika. 2023. V. 42. № 12. P. 70. https://doi.org/10.31857/S0207401X23120087
- Koifman O.I., Rychikhina E.D., Yunin P.A., Koptyaev A.I., Sachkov Yu.I., Pakhomov G.L. // Colloids Surf., A. 2022. V. 648. P. 129284. https://doi.org/10.1016/j.colsurfa.2022.129284
- Travkin V.V., Sachkov Yu.I., Koptyaev A.I., Pakhomov G.L. // Chem. Phys. 2023. V. 573. P. 112014. https://doi.org/10.1016/j.chemphys.2023.112014
- Pakhomov G.L., Koptyaev A.I., Yunin P.A., Somov N.V., Semeikin A.S., Rychikhina E.D., Stuzhin P.A. // ChemistrySelect. 2023. V. 8. № 45. P. e202303271. https://doi.org/10.1002/slct.202303271
- Koptyaev A.I., Rychikhina E.D., Zhabanov Yu.A., Travkin V.V., Pakhomov G.L. // Supramol. Mater. (China). 2024. V. 3. № 1. P. 100075. https://doi.org/10.1016/j.supmat.2024.100075
- Zhabanov Yu.A., Eroshin A.V., Koifman O.I., Travkin V.V., Pakhomov G.L. // Macroheterocycles. 2024. V. 17. № 1. P. 4. https://doi.org/10.6060/mhc245693p
- Bader R.F.W. Atoms in Molecules. Encycl. Comput. Chem. Chichester, UK: J. Wiley & Sons, 2002. https://doi.org/10.1002/0470845015.caa012
- Neese F. // WIREs Comput. Mol. Sci. 2012. V. 2. № 1. P. 73. https://doi.org/10.1002/wcms.81
- Neese F. // Ibid. 2022. V. 12. № 5. P. e1606. https://doi.org/10.1002/wcms.1606
- Grimme S., Brandenburg J.G., Bannwarth C. et al. // J. Chem. Phys. 2015. V. 143. № 5. P. 054107. https://doi.org/10.1063/1.4927476
- Praveen P.A., Saravanapriya D., Bhat S.V. et al. // Mater. Sci. Semicond. Process. 2024. V. 173. P. 108159. https://doi.org/10.1016/j.mssp.2024.108159
- Bannwarth Ch., Grimme S. // Comput. Theor. Chem. 2014. V. 1040–1041. P. 45. https://doi.org/10.1016/j.comptc.2014.02.023
- Martynov A.G., Mack J., May A.K. et al. // ACS Omega. 2019. V. 4. № 4. P. 7265. https://doi.org/10.1021/acsomega.8b03500
- Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
- Pogonin A.E., Krasnov A.V., Zhabanov Yu.A. et al. // Macroheterocycles. 2012. V. 5. № 4–5. P. 315. https://doi.org/10.6060/mhc2012.121109g
- Pogonin A.E., Tverdova N.V., Ischenko A.A. et al. // J. Mol. Struct. 2015. V. 1085. P. 276–285. https://doi.org/10.1016/j.molstruc.2014.12.089
- Perlovich G.L., Golubchikov O.A., Klueva M.E. // J. Porphyrins Phthalocyanines. 2000. V. 4. № 8. P. 699. https://doi.org/10.1002/1099-1409(200012)4:8<699:: AID-JPP284>3.0.CO;2-M
- Chickos J.S., Acree Jr. W.E. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 2. P. 537. https://doi.org/10.1063/1.1475333
- Kudin L.S., Dunaev A.M., Motalov V.B. et al. // J. Chem. Thermodyn. 2020. V. 151. P. 106244. https://doi.org/10.1016/j.jct.2020.106244
- Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3–4. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0
- Eroshin A.V., Otlyotov A.A., Kuzmin I.A., Stuzhin P.A., Zhabanov Y.A. // Int. J. Mol. Sci. 2022. V. 23. № 2. P. 939. https://doi.org/10.3390/ijms23020939
- Eroshin A.V., Koptyaev A.I., Otlyotov A.A., Minenkov Y., Zhabanov Y.A. // Int. J. Mol. Sci. 2023. V. 24. № 8. P. 7070. https://doi.org/10.3390/ijms24087070
- Koifman O.I., Rychikhina E.D., Travkin V.V., Sachkov Y.I., Stuzhin P.A., Somov N.V., Yunin P.A., Zhabanov Yu.A., Pakhomov G.L. // ChemPlusChem. 2023. V. 88. № 5. P. e202300141. https://doi.org/10.1002/cplu.202300141
- Nemykin V.N., Hadt R.G. // J. Phys. Chem. A. 2010. V. 114. № 45. P. 12062. https://doi.org/10.1021/jp1083828
- Gouterman M. // J. Mol. Spectrosc. 1961. V. 6. P. 138. https://doi.org/10.1016/0022-2852(61)90236-3
- Gouterman M., Wagnière G.H., Snyder L.C. // Ibid. 1963. V. 11. № 1–6. P. 108. https://doi.org/10.1016/0022-2852(63)90011-0
- Mironov N.A., Milordov D.V., Abilova G.R. et al. // Pet. Chem. 2019. V. 59. P. 1077. https://doi.org/10.1134/S0965544119100074
Supplementary files
