Mechanism of effect of the zinc and lead ions on state of the oxidation processes in liposomes from lecithin

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The influence of divalent zinc and lead ions in a wide range of concentrations on the ability of soy lecithin to spontaneous aggregation in water medium, the zeta potential of he formed liposomes, the ability of metal ions to interact with membranes and their participation in the processes of the lipid peroxidation were studied using the method of dynamic light scattering and mathematical processing of UV-spectra of lecithin and its mixtures with metal ions. It has been shown that the scale and direction of the impact of zinc and lead ions corresponds to their biological activity when entering the body. The data obtained and the analysis of the literature allow us to conclude that the effect of zinc ions at high concentrations on the structural state of membranes and their electrophoretic properties and a significant change in the parameters of the lipid peroxidation regulation system in biological objects in the presence of lead ions, even at low doses, are the basis of their toxicity for biological objects.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Mashukova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
Ресей, Moscow

A. Dubovik

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
Ресей, Moscow; Moscow

V. Shvydkiy

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: shishkina@sky.chph.ras.ru
Ресей, Moscow

L. Shishkina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: shishkina@sky.chph.ras.ru
Ресей, Moscow

Әдебиет тізімі

  1. V.F. Gromov, M.I. Ikim, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 16, 138 (2022). https://doi.org/10.1134/S1990793122010055
  2. E.V. Stamm, Yu.I. Skurlatov, V.O Shvydkiy et al. Russ. J. Phys. Chem. B. 9, 421 (2015). https://doi.org/10.1134/S1990793115030197
  3. Yu.I. Skurlatov, E.V. Vichutinskaya, N.I. Zaitseva et al. Russ. J. Phys. Chem. B. 9, 412 (2015). https://doi.org/10.1134/S1990793115030203
  4. E.V. Stamm, Yu.I. Skurlatov, A.V. Roshchin et al. Russ. J. Phys. Chem. B. 13, 986 (2019). https://doi.org/ 10.1134/S1990793119060095
  5. V.O. Shvydkiy, E.V. Stamm, Yu.I. Skurlatov et al. Russ. J. Phys. Chem. B. 11, 643 (2017). https://doi.org/10.1134/S1990793117040248
  6. L.N. Shishkina, M.V. Kozlov, A.Yu. Povkh, V.O. Shvydkiy. Russ. J. Phys. Chem. B. 15, 861 (2021). https://doi.org/ 10.1134/S1990793121050080
  7. N.Yu. Gerasimov, O.V. Nevrova, I.V. Zhigacheva et al. Russ. J. Phys. Chem. B. 17, 135 (2023). https://doi.org/10.1134/s1990793123010049
  8. L.N. Shishkina, L.I. Mazaletskaya, M.V. Kozlov et al. Russ. J. Phys. Chem. B. 14, 498 (2020). https://doi.org/ 10.1134/S1990793120030240
  9. V. Shvydkyi, S. Dolgov, A. Dubovik et al. Chem. J. Moldova. Т. 17(2), 35 (2022). http://dx.doi.org/10.19261/cjm.2022.973
  10. L.N. Shishkina, M.V. Kozlov, T.V. Konstantinova et al. Russ. J. of Phys. Chem. B. 17, 141 (2023). https://doi.org/ 10.1134/s1990793123010104
  11. I.V. Kumpanenko, N.A. Ivanova, O.V. Shapovalova et al. Russ. J. of Phys. Chem. B. 16, 917 (2022). https://doi.org/10.1134/s1990793122050050
  12. A.W. Girotti, J.P. Thomas, J.E. Jordan. J. Free Rad. Biol. & Med. 1, 395 (1985). https://doi.org/10.1016/0748-5514(85)90152-7
  13. R. Sandhir, K.D. Gill. Biol. Trace elem. Res 48, 91 (1995). https://doi.org/10.1007/BF02789081
  14. Sh.O. Nuriddinova, A.V. Tsoi, A.S. Sultanbaeva, Kh.N. Akbarkhodzhaeva. ORIENS 3, 214 (2023).
  15. T.T. Vu, J.C. Fredenburgh, J.I. Weitz. Thromb.Haemost. 109, 421 (2013). https://doi.org/10.1160/TH12-07-0465
  16. M. Bundschuh, J. Filser, S. Lüderwald et al. Environ. Sci. Eur. 30, 1 (2018). https://doi.org/10.1186/s12302-018-0132-6
  17. A.V. Lobanova, Yu.S. Chasovskikh. Proc. Intern. conf. Week of russian science. Saratov: Razumovsky University, 2023, P. 1140.
  18. L.J. Lawton, W.E. Donaldson. Biol. Trace Elem. Res. 28, 83 (1991). https://doi.org/10.1007/BF02863075
  19. S. Kasperczyk, L. Słowińska-Łożyńska, A. Kasperczyk. Toxicol. Ind. Health 31, 1165 (2015). https://doi.org/10.1177/0748233713491804
  20. J.B.C. Findlay, W.H. Evans. Biological membranes: a practical approach, Ltd, Oxford, 1987.
  21. L.N. Shishkina, E.V. Kushnireva, M.A. Smotryaeva. Radiation biology. Radioecology, 44, 289 (2004).
  22. K.M. Marakulina, R.V. Kramor, Yu.K. Lukanina et al. Russ. J. Phys. Chem. A 90, 286 (2016). https://doi.org/10.1134/S0036024416020187
  23. E.F. Brin, S.O. Travin. J. Chem. Phys. B. 10, 830 (1991).
  24. R. Gennis, Biomembranes: Molecular structure and function. (Springer, New York, 1989).
  25. L.N. Shishkina, M.A. Klimovich, M.V. Kozlov. Pharmaceutical and Medical Biotechn. New Persp, (Nova Science Publishers, New York, 2013).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependence of the ζ-potential values ​​of lecithin liposomes ([Lecithin] = 4.3 10–5 M) on the concentration of lead ions (1, lecithin batch No. 2; 2, lecithin batch No. 1) and zinc ions (3, lecithin batch No. 1).

Жүктеу (62KB)
3. Fig. 2. Ultraviolet spectrum of lecithin in the presence of zinc ions and its Gaussians: 1 and 2 – initial and calculated spectra, 3 – 196.4 nm, 4 – 231.0 nm, 5 – 265.8 nm, 6 – 343.6 nm, 7 – 407.7 nm; [Lecithin] = 4.3 10–5 M, [Zn]2+ = 5 10–5 M.

Жүктеу (57KB)
4. Fig. 3. Ultraviolet spectrum of lecithin in the presence of lead ions and its Gaussians: 1 and 2 – initial and calculated spectra, 3 – 198.7 nm, 4 – 209.6 nm, 5 – 232.4 nm, 6 – 260.8 nm, 7 – 352.6 nm; [Lecithin] = 4.3 10–5 M, [Pb]2+ = 5 10–5 M.

Жүктеу (53KB)
5. Fig. 4. The ratio of the content of ketodienes (KD) and diene conjugates (DC) in liposome lipids depending on the concentration of zinc (1) and lead (2) ions in the solution.

Жүктеу (58KB)

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».