Detection of photoreversibility of NO2–ONO linkage isomerization in [Co(NH3)5NO2]Cl(NO3 crystals by the photomechanical response method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Linkage isomerization NO2-ONO (nitro-nitrito) in the complex cation [Co(NH3)5NO2]2+ is a well-studied classical reaction. It is believed that the photoisomerization of the nitro form to nitrito in the crystalline phase achieves complete transformation at low temperature, while the reverse transformation proceeds as a first-order thermal intramolecular reaction upon heating of the crystals. To date, there is no information about the possibility of reverse photoisomerization. In this work, photoisomerization in [Co(NH3)5NO2]Cl(NO3) crystals is investigated by the analysis of crystal deformation caused by the transformation at different wavelengths. A change in the lattice parameters during the transformation leads to reliably measurable elongation and bending of acicular crystals. It is shown that the limiting elongation of the crystal under prolonged irradiation depends on the wavelength, which proves the reversibility of photoisomerization. The quantum yield of the reverse reaction is estimated to be 0.04 of the quantum yield of the direct reaction.

About the authors

S. A. Chizhik

Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Science

Author for correspondence.
Email: stas@solid.nsc.ru
Russian Federation, Novosibirsk

P. A. Gribov

Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Science

Email: stas@solid.nsc.ru
Russian Federation, Novosibirsk

V. Yu. Kovalskii

Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Science

Email: stas@solid.nsc.ru
Russian Federation, Novosibirsk

A. A. Sidelnikov

Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Science

Email: stas@solid.nsc.ru
Russian Federation, Novosibirsk

References

  1. Gibbs W. and Genth F.A. Researches on the Ammonia-cobalt Bases (Smithsonian Institution, 1856).
  2. Jörgensen S.M. // Z. Anorg. Chem. 1894. V. 5. 147–196,
  3. Kauffman G.B. // Coord. Chem. Rev. 1973. V. 11. P. 161–188.
  4. Boldyreva E.V. // Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals. 1994. V. 242. P. 17–52.
  5. Boldyreva E.V. // Russian Journal of Coordination Chemistry. 2001. V. 27. P. 297–323.
  6. Basolo F., Pearson R.G. Mechanisms of inorganic reactions: Study of metal complexes in solution (John Wiley & Sons, Nashville, TN, 1967).
  7. Scandola F., Bartocci C., Scandola M.A. // The Journal of Physical Chemistry. 1974. V. 78. P. 572–575.
  8. Balzani V., Ballardini R., Sabbatini N., Moggi L. // Inorg. Chem. 1968. V. 7. P. 1398–1404.
  9. Kubota M., Ohba S. // Acta Crystallogr., Sect. B. 1992. V. 48. P. 627–632.
  10. Heyns A.M., de Waal D. // Spectrochimica Acta Part A: Molecular Spectroscopy. 1989. V. 45. P. 905–909.
  11. Eslami A. // Thermochim. Acta. 2004. V. 409. P. 189–193.
  12. Eslami A., Hasani N. // Thermochim. Acta. 2014. V. 575. P. 114–121.
  13. Chizhik S., Sidelnikov A., Zakharov B., Naumov P., Boldyreva E. // Chemical Science. 2018. V. 9. P. 2319–2335.
  14. Adell B. // Z. Anorg. Allg. Chem. 1952. V. 271. № 1–2. P. 49–64.
  15. Boldyreva E.V., Sidelnikov A.A., Chupakhin A.P., Lyakhov N.Z., Boldyrev V.V. // Dokl. Akad. Nauk SSSR 1984. V. 277. P. 893–896.
  16. Boldyreva E.V., Sidelnikov A.A. // Izv. Sib. Otd. Akad. Nauk SSR, Ser. Khim. Nauk 1987. V. 5.
  17. Boldyreva E.V. // Solid State Ionics. 1997. V. 101–103. P. 843.
  18. Kitagawa D., Tanaka R., Kobatake S. // Phys. Chem. Chem. Phys. 2015. V. 17. № 41. P. 27300.
  19. Luty T., Eckhardt C.J. // J. Amer. Chem. Soc. 1995. V. 117. № 9. P. 2441.
  20. Sidelnikov A.A., Chizhik S.A., Zakharov B.A., Chupakhin A.P., Boldyreva E.B. // CrystEngComm. 2016. V. 18. № 38. P. 7276.
  21. Grenthe I., Nordin E. // Inorg. Chem. 1979. V. 18. № 7. P. 1869.
  22. Ciofini I., Adamo C. // J. Phys. Chem. A. 2001. V. 105. № 6. P. 1086.
  23. Johnson D.A., Pashman K.A. // Inorg. Nucl. Chem. Lett. 1975. V. 11. № 1. P. 23.
  24. Muya J.T., Chung H., Lee S.U. // RSC Adv. 2018. V. 8. № 6. P. 3328.
  25. Muya J.T., Meher B.R., Sahoo S.C., Chung H. // Intern. J. Quantum Chem. 2019. V. 19. № 14. P. e25929.
  26. Jackson W.G. // J. Chem. Educ. 1991. V. 68. № 11. P. 903.
  27. Phillips W.M., Choi S., Larrabee J.A. // Ibid. 1990. V. 67. № 3. P. 267.
  28. Masciocchi N., Kolyshev A., Dulepov V., Boldyreva E., Sironi A. // Inorg. Chem. 1994. V. 33. № 12. P. 2579.
  29. Beattie I.R., Satchell D.P.N. // Trans. Faraday Soc. 1956. V. 52. P. 1590.
  30. Naumov P., Chizhik S., Panda M.K., Nath N.K., Boldyreva E. // Chem. Rev. 2015. V. 115. № 22. P. 12440.
  31. Nath N.K., Panda M.K., Sahoo S.C., Naumov P. // CrystEngComm. 2014. V. 16. № 10. P. 1850.
  32. Commins P., Desta I.T., Karothu D.P., Panda M.K., Naumov P. // Chem. Commun. 2016. V. 52. № 97. P. 13941.
  33. White T.J. Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work. Wiley, 2017. P. 233.
  34. Naumov P., Karothu D.P., Ahmed E., Catalano L., Commins P. et al. // J. Amer. Chem. Soc. 2020. V. 142. № 31. P. 13256.
  35. Halabi J.M., Ahmed E., Sofela S., Naumov P. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. № 5. P. e2020604118.
  36. Gromov S.P., Chibisov A.K., Alfimov M.V. // Russian Journal of Physical Chemistry B. 2021. V. 15. P. 219.
  37. Kitagawa D., Tanaka R., Kobatake S. // Phys. Chem. Chem. Phys. 2015. V. 17. № 41. P. 27300.
  38. Hirano A., Kitagawa D., Kobatake S. // CrystEngComm. 2019. V. 21. № 15. P. 2495.
  39. Kitagawa D., Kobatake S. // J. Phys. Chem. C. 2013. V. 117. № 40. P. 20887.
  40. Kim T., Zhu L., Mueller L.J., Bardeen C.J. // J. Amer. Chem. Soc. 2014. V. 136. № 18. P. 6617.
  41. Ahmed E., Chizhik S., Sidelnikov A., Boldyreva E., Naumov P. // Inorg. Chem. 2022. V. 61. № 8. P. 3573.
  42. Schneider C.A., Rasband W.S., Eliceiri K.W. // Nat. Methods. 2012. V. 9. № 7. P. 671.
  43. Mayerhofer T.G., Pahlow S., Popp J. // ChemPhysChem. 2020. V. 21. № 18. P. 2029.

Note

Х Международная конференция им. В.В. Воеводского “Физика и химия элементарных химических про­цессов” (сентябрь 2022, Новосибирск, Россия).


Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies