Optical Spectra of Composite Materials Based on Molybdenum- Containing Nanoparticles and High-Pressure Polyethylene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Molybdenum-containing composite nanomaterials are synthesized by the thermal decomposition
of molybdenum hexacarbonyl in a solution-melt of polyethylene in mineral oil. The concentration of a metalcontaining
filler in the composite materials varied from 1 to 20 wt %. A technique for preparing film samples
for spectroscopic studies is developed, and the samples obtained are studied by UVI, IR, and Raman spectroscopy.
It is found that additional absorption bands appear in the IR range, whose intensity depends on the
concentration of molybdenum-containing nanoparticles in the composite materials. The spectral characteristics
of Raman scattering show that all samples are characterized by the stretching of the C–C bond. In the
visible light region, the spectrum of nanocomposites has a flat edge of its own absorption located in the region
of wave numbers (18–31) × 103 cm–1.

About the authors

A. S. Fionov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: asfionov@gmail.com
Moscow, Russia

V. V. Kolesov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: asfionov@gmail.com
Moscow, Russia

V. A. Fionova

Bauman Moscow State Technical University

Email: asfionov@gmail.com
Moscow, Russia

N. A. Taratanov

Ivanovo Fire and Rescue Academy of the State Fire Service of the Ministry of Emergency Situations of Russia

Email: asfionov@gmail.com
Ivanovo, Russia

E. V. Golovanov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: asfionov@gmail.com
Moscow, Russia

E. B. Dzhangurazov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: asfionov@gmail.com
Moscow, Russia

B. Z. Beshtoev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: asfionov@gmail.com
Moscow, Russia

A. S. Voronov

State Scientific Center of the Russian Federation Troitsk Institute of Innovation and Thermonuclear Research

Email: asfionov@gmail.com
Troitsk, Russia

G. Yu. Yurkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: asfionov@gmail.com
Moscow, Russia

References

  1. Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н. и др. // Хим. физика. 2021. Т. 40. № 6. С. 18.
  2. Андреев Д.Е., Вдовин Ю.С., Юхвид В.И. и др. // Хим. физика. 2020. Т. 39. № 3. С. 24.
  3. Луканина Ю.К., Колесникова Н.Н., Попов А.А. и др. // Хим. физика. 2019. Т. 38. № 4. С. 69.
  4. Герасимов Г.Н., Громов В.Ф., Иким М.И. и др. // Хим. физика. 2019. Т. 38. № 10. С. 41.
  5. Жуков А.М., Солодилов В.И., Третьяков И.В. и др. // Хим. физика. 2022. Т. 41. № 9. С. 64.
  6. Rogge S.M., Bavykina A., Hajek J. et al. // Chem. Soc. Rev. 2017. V. 46. № 11. P. 3134.
  7. Sensors: Proceedings of the Fourth National Conference on Sensors, 2018, Italy; https://doi.org/10.1007/978-3-030-04324-7
  8. Zhang W., Mou Z., Wang Y. et al. // Mater. Sci. and Eng., C. 2019. V. 97. P. 486.
  9. Govindasamy M., Rajaji U., Chen S.M. et al. // Anal. Chim. Acta. 2018. V. 1030. P. 52.
  10. Adamska K., Okal J., Tylus W. // Applied Catalysis B: Environmental. 2019. V. 246. P. 180.
  11. Boufaden N., Pawelec B., Fierro J.L.G. et al. // Mater. Chem. Phys. 2018. V. 209. P. 188.
  12. Rabalais J.W., Colton R.J., Guzman A.M. // Chemical Physics Letters. 1974. V. 29. P. 131.
  13. Yao J., Hashimoto K., Fujishima A. // Nature. 1992. V. 355. P. 624.
  14. Yang Y.A., Cao Y.W., Loo B.H., Yao J.N. // J. Phys. Chem. B. 1998. V. 102. № 47. P. 9392.
  15. Jalalian M., Farzaneh F., Foruzin L.J. // J. Cluster. Sci. 2015. V. 26. № 3. P. 703.
  16. Rathnasamy R., Thangamuthu R., Alagan V. // Res. Chem. Intermed. 2018. V. 44. P. 1647.
  17. Xu Y., Xie L., Zhang Y. et al. // Electron. Mater. Lett. 2013. V. 9. P. 693.
  18. Buzanovskii V.A. // Ref. J. Chem. 2018. V. 8. № 3. P. 243.
  19. Kim W.S., Kim H.C., Hong S.H. // J. Nanopart. Res. 2010. V. 12. P. 1889.
  20. Ferroni M., Guidi V., Martinelli G. et al. // Sens. Actuators, B. Chemical. 1998. V. 48. № 1. P. 285.
  21. Ferguson I.F., Ainscough J.B., Morse D., Miller A.W. // Nature. 1964. V. 202. № 4939. P. 1327.
  22. Таратанов Н.А., Юрков Г.Ю., Фионов А.С. и др. // РЭ. 2009. Т. 54. № 8. С. 986.
  23. Фионов А.С., Юрков Г.Ю., Потапов А.А. и др. // Нелинейный мир. 2008. Т. 6. № 1. С. 37.
  24. Юрков Г.Ю., Devlin E., Панчук В.В. и др. // ФТТ. 2013. Т. 55. № 9. С. 1830.
  25. Таратанов Н.А., Козинкин А.В., Юрков Г.Ю. и др. // Перспективные матер. 2009. № 5. С. 55.
  26. Yurkov G.Yu., Pankratov D.A., Koksharov Yu.A. et al. // Ceram. Intern. 2022. V. 48. № 24. P. 37410.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (98KB)
3.

Download (86KB)
4.

Download (91KB)
5.

Download (89KB)
6.

Download (81KB)
7.

Download (87KB)
8.

Download (87KB)
9.

Download (82KB)
10.

Download (91KB)
11.

Download (112KB)

Copyright (c) 2023 А.С. Фионов, В.В. Колесов, В.А. Фионова, Н.А. Таратанов, Е.В. Голованов, Э.Б. Джангуразов, Б.З. Бештоев, А.С. Воронов, Г.Ю. Юрков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies