Influence of Internal Microarchitecture on the Shape of Individual Implants Made from Vinylidene Fluoride Copolymer by 3D Printing with High-Temperature Crystallization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The healing potential of individual polymer implants for the reconstruction of extensive craniofacial
defects after cancer resection is largely determined by the internal architecture of the implant. The architecture
of an implant during polymer crystallization could affect the structure and shape of the implant at the
micro and macro levels. In this study, the relationship between the internal architecture (triply periodic minimum
surface structure (gyroid), cube, grid, and honeycomb) and shape changes of individual implants by
3D printing with a vinylidene fluoride-tetrafluoroethylene copolymer after crystallization is examined at a
filling density of 70%. Using the method of differential scanning calorimetry, it is established that crystallization
leads to the rearrangement of the crystalline structure of the implant into electrically active (ferroelectric)
crystalline phases. Moreover, the type of internal architecture affects the change in the shape of the
implant after crystallization. The results of the computed tomography show that structures with a triply periodic
minimum surface (gyroid) provide the minimal deformation of the implant during crystallization, which
makes such structures optimal for manufacturing implants for replacing bone defects in the zygomatic-orbital
complex.

About the authors

A. O. Vorobyev

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

D. E. Kulbakin

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia

S. G. Chistyakov

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

A. D. Mitrichenko

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia

G. E. Dubinenko

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

I. O. Akimchenko

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

A. S. Gogolev

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

E. L. Choynzonov

Tomsk National Research Medical Center, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia

V. M. Bouznik

National Research Tomsk Polytechnic University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

E. N. Bolbasov

National Research Tomsk Polytechnic University; Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: Ftoroplast@tpu.ru
Tomsk, Russia; Tomsk, Russia

References

  1. Кульбакин Д.Е., Чойнзонов Е.Л., Буякова С.П. и др. // Голова и шея. 2018. V. 6. № 4. Р. 64. https://doi.org/10.25792/HN.2018.6.4.64-69
  2. Жуков А.М., Солодилов В.И., Третьяков И.В., Буракова Е.А., Юрков Г.Ю. // Хим. физика. 2022. Т. 49. № 1. С. 64; https://doi.org/10.31857/S0207401X22090138
  3. Иванова Т.А., Голубева Е.Н. // Хим. физика. 2022. Т. 41. № 6. С. 35; https://doi.org/10.31857/S0207401X2206005X
  4. Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
  5. Badaraev A.D., Koniaeva A., Krikova S.A. et al. // Appl. Surf. Sci. 2020. V. 504; https://doi.org/10.1016/j.apsusc.2019.144068
  6. Akimchenko I.O., Dubinenko G.E., Rutkowski S. et al. // Appl. Phys. Lett. 2021. V. 119. № 20; https://doi.org/10.1063/5.0070365
  7. Kapat K., Shubhra Q.T.H., Zhou M. et al. // Adv. Funct. Mat. 2020. V. 30. № 44; https://doi.org/10.1002/adfm.201909045
  8. Kochervinskii V.V. // Russ. Chem. Rev. 1996. V. 65. № 10. P. 936; https://doi.org/10.1070/RC1996v065n10ABEH000328
  9. Li Y., Tang S., Pan M.W. et al. // Macromolecules. 2015. V. 48. № 23. P. 8565; https://doi.org/10.1021/acs.macromol.5b01895
  10. Inoue M., Tada Y., Suganuma K. et al. // Polym. Degrad. Stabil. 2007. V. 92. P. 1833; https://doi.org/10.1016/j.polymdegradstab.2007.07.003
  11. Lovinger A.J., Johnson G.E., Bair H.E. et al. // J. Appl. Phys. 1984. V. 56. P. 2412; https://doi.org/10.1063/1.334303
  12. Murata Y. // Polym. J. 1987. V. 19. P. 337; https://doi.org/10.1295/polymj.19.337
  13. Rammohan A.V., Lee T., Tan V.B.C. // Intern. J. Appl. Mech. 2015. V. 7. № 3; https://doi.org/10.1142/S1758825115500489
  14. Dong Z., Zhao X. // Eng. Regen. 2021. V. 2. P. 154; https://doi.org/10.1016/j.engreg.2021.09.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (753KB)
3.

Download (1MB)
4.

Download (70KB)
5.

Download (1MB)
6.

Download (1MB)
7.

Download (1MB)

Copyright (c) 2023 А.О. Воробьев, Д.Е. Кульбакин, С.Г. Чистяков, А.Д. Митриченко, Г.Е. Дубиненко, И.О. Акимченко, А.С. Гоголев, Е.Л. Чойнзонов, В.М. Бузник, Е.Н. Больбасов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies