Thermal Stability of Passivated Compacts from Pyrophoric Iron Nanopowders

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Compact samples with diameters of 3 and 5 mm are prepared from pyrophoric iron nanopowder in a glove box in an argon atmosphere, which are placed in bottles with a ground-in lid. The iron nanopowder is obtained by the chemical-metallurgical method. The average size of the nanoparticles is 85 nm. It is established that during the exposure of the bottles with the samples to air, the samples were passivated with the preservation of their high chemical activity, since a combustion wave was launched over the sample at a rate of about 0.25 mm / s when the oxidation reaction was initiated by a high-temperature source. Exposure of passivated samples with a diameter of 5 mm for 60 min at a temperature of 110°С did not lead to a change in the phase composition of the sample. Exposure at a temperature of 180°С for 30 min led to a change in the color of the sample and its oxidation. The experiments with passivated samples with a diameter of 3 mm show that, under conditions of programmed heating, ignition of the samples occurs at a temperature of about 100°С. The conducted studies allow us to consider the obtained compact samples from an iron nanopowder thermally stable at temperatures below 100°C, when special temperature conditions are not required for their safe storage and transportation.

About the authors

M. I. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: alymov@ism.ac.ru
Chernogolovka, Russia

B. S. Seplyarskii

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: alymov@ism.ac.ru
Chernogolovka, Russia

R. A. Kochetkov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: alymov@ism.ac.ru
Chernogolovka, Russia

References

  1. Bouillard J., Vignes A., Dufaud O., Perrin L., Thomas D. // J. Hazard. Mater. 2010. V. 181. № 1–3. P. 873; https://doi.org/10.1016/j.jhazmat.2010.05.094
  2. Pivkina A., Ulyanova P., Frolov Y., Zavyalov S., Schoonman J. // Propellants, Explosives, Pyrotechnics. 2004. V. 29. № 1. P. 39; https://doi.org/10.1002/prep.200400025
  3. Bhushan B. Springer Handbook of Nanotechnology. 4th ed. Berlin: Springer-Verlag Heidelberg, 2017; https://doi.org/10.1007/978-3-662-54357-3
  4. Crane R.A., Scott T. // J. Hazard. Mater. 2012. V. 211. P. 112; https://doi.org/10.1016/j.jhazmat.2011.11.073
  5. Huber D.L. // Small. 2005. V. 1. P. 482; https://doi.org/10.1002/smll.200500006
  6. Hosokawa M., Nogi K., Naito M., Yokoyama T. Nanoparticle technology handbook. Elsevier, 2007.
  7. Rubtsov N.M., Seplyarskii B.S., Alymov M.I. Ignition and wave processes in combustion of solids. Springer Intern. Publ., 2017.
  8. Flannery M., Desai T.G., Matsoukas T., Lotfizadeh S., Oehlschlaeger M.A. // J. Nanomater. 2008. V. 2015. P. 185; https://doi.org/10.1155/2015/682153
  9. Meziani M.J., Bunker C.E., Lu F. et al. // ACS Appl. Mater. Interfaces. 2009. V. 1. № 3. P. 703; https://doi.org/10.1021/am800209m
  10. Nagarajan R., Hatton T.A. Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization. ACS Sympos. Ser.; Washington, DC: Amer. Chem. Soc., 2008.
  11. Громов А.А., Строкова Ю.И., Дитц А.А. // Хим. физика. 2010. Т. 29. № 2. С. 77.
  12. Young-Soon Kwon, Gromov A.A., Strokova J.I. // Appl. Surf. Sci. 2007. V. 253. P. 5558; https://doi.org/10.1016/j.apsusc.2006.12.124
  13. Gromov A.A., Förter-Barth U., Teipel U. // Powder Technol. 2006. V. 164. P. 111; https://doi.org/10.1016/j.powtec.2006.03.003
  14. Alymov M.I., Rubtsov N.M., Seplyarskii B.S., Zelensky V.A., Ankudinov A.B. // Mendeleev Commun. 2016. V. 26. P. 452; https://doi.org/10.1016/j.mencom.2016.09.030
  15. Алымов М.И., Рубцов Н.М., Сеплярский Б.С., Зеленский В.А., Анкудинов А.Б. // Неорган. материалы. 2017. № 9. С. 929.
  16. Alymov M.I., Rubtsov N.M., Seplyarskii B.S., Zelensky V.A., Ankudinov A.B. // Mendeleev Commun. 2017. V. 27. P. 482;https://doi.org/10.1016/j.mencom.2017.09.017
  17. Alymov M.I., Rubtsov N.M., Seplyarskii B.S. et al. // Mendeleev Commun. 2017. V. 27. P. 631;https://doi.org/10.1016/j.mencom.2017.11.032
  18. Dong S., Cheng H., Yang H., Hou P., Zou G. // J. Phys.: Condens. Matter. 2002. V. 14. P. 11023; https://doi.org/10.1088/0953-8984/14/44/421
  19. Hunt E.M., Pantoya M.L. // J. Appl. Phys. 2005. V. 98. 034 909; https://doi.org/10.1063/1.1990265
  20. Saceleanu F., Idir M., Chaumeix N., Wen J.Z. // Front. Chem. 2018. V. 6; https://doi.org/10.3389/fchem.2018.00465
  21. Моногаров Г.А., Мееров Д.Б., Фролов Ю.В., Пивкина А.Н. // Хим. физика. 2019. Т. 38. № 8. С. 40; https://doi.org/10.1134/S0207401X19080119
  22. Gromov A.A., Teipel U. Metal Nanopowders: Production, Characterization, and Energetic Applications. N.Y.: John Wiley & Sons, 2014; https://doi.org/10.1002/9783527680696
  23. Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н. и др. // Хим. физика. 2021. Т. 40. № 6. С. 18; https://doi.org/10.31857/S0207401X21060157
  24. Алымов М.И., Сеплярский Б.С., Вадченко С.Г. и др. // Письма о материалах. 2021. Т. 11. № 1. С. 39; https://doi.org/10.22226/2410-3535-2021-1-39-44
  25. Алымов М.И., Сеплярский Б.С., Вадченко С.Г. и др. // Хим. физика. 2021. Т. 40. № 4. С. 85; https://doi.org/10.31857/S0207401X21040026
  26. Алымов М.И., Сеплярский Б.С., Вадченко С.Г. и др. // Физика горения и взрыва. 2021. Т. 57. № 1. С. 79; https://doi.org/10.15372/FGV20210307

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (744KB)
3.

Download (807KB)
4.

Download (809KB)
5.

Download (233KB)
6.

Download (1MB)
7.

Download (100KB)
8.

Download (96KB)
9.

Download (2MB)
10.

Download (95KB)

Copyright (c) 2023 М.И. Алымов, Б.С. Сеплярский, Р.А. Кочетков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies