Coupled Generation of Acoustic and Gravity Waves by Tropospheric Heat Sources

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The generation of acoustic-gravity waves by meteorological heat sources in the troposphere and the propagation of these waves to the heights of the upper atmosphere are studied theoretically. Equations that describe separately the generation and propagation of acoustic and gravity waves by a local heat source are derived. The heat source of the waves is divided into partial sources of gravity and acoustic waves (AWs). The power of these partial sources is estimated and it is shown that the power of the sources differs by about a factor of two, regardless of the shape, size, and frequency of the heat source. It is shown that in the case of heat sources of the waves, the generation of gravity waves cannot occur without the corresponding generation of AWs: these waves are generated only in pairs. The splitting of the problem of waves from a heat source into problems of waves from gravity and acoustic sources is illustrated by the direct modeling of these waves. The application of the obtained results to the problem of parametrization of acoustic-gravity waves in general circulation and climate models is discussed.

About the authors

S. P. Kshevetskii

Kant Baltic Federal University, Kaliningrad, Russia; St. Petersburg State University, St. Petersburg, Russia; Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

Email: SPKshev@gmail.com
Россия, Калининград; Россия, Санкт-Петербург; Россия, Москва

Yu. A. Kurdyaeva

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences, Kaliningrad, Russia; St. Petersburg State University, St. Petersburg, Russia

Email: SPKshev@gmail.com
Россия, Калининград; Россия, Санкт-Петербург

N. M. Gavrilov

St. Petersburg State University, St. Petersburg, Russia

Author for correspondence.
Email: SPKshev@gmail.com
Россия, Санкт-Петербург

References

  1. Artru J., Ducic V., Kanamori H. et al. // Geophys. J. Int. 2005. V. 160. № 3. P. 840; https://doi.org/10.1111/j.1365-246X.2005.02552.x
  2. Borchevkina O., Karpov I., Karpov M. // Atmosphere. 2020. V. 11. № 9. P. 1017; https://doi.org/10.3390/atmos11091017
  3. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G. // J. Atmos. Sol. Terr. Phys. 2015. V. 136. № 3. P. 235; https://doi.org/10.1016/j.jastp.2015.07.006
  4. Fritts D.C., Vadas S.L., Wan K. et al. // Ibid. 2006. V. 68. № 3–5. P. 247; https://doi.org/10.1016/j.jastp.2005.04.010
  5. Plougonven R., Zhang F. // Rev. Geophys. 2014. V. 52. № 1. P. 1; https://doi.org/10.1002/2012RG000419
  6. Plougonven R., Snyder Ch. // J. Atmos. Sci. 2007. V. 64. № 7. P. 2502; https://doi.org/10.1175/JAS3953.1
  7. Гаврилов Н.М., Коваль А.В., Погорельцев А.И. и др. // Изв. РАН. Физика атмосферы и океана. 2013. Т. 49. № 4. С. 401; https://doi.org/10.7868/S0002351513040032
  8. Голубков Г.В., Адамсон С.О., Борчевкина О.П. и др. // Хим.физика. 2022. Т. 41. № 5. С. 531; https://doi.org/10.31857/S0207401X22050053
  9. Бахметьева Н.В., Григорьев Г.И., Калинина Е.Е. // Хим. физика. 2023. Т. 42. № 4. С. 73; https://doi.org/0.31857/S0207401X23040039
  10. Karpov I., Kshevetskii S. // J. Atmos. Sol. Terr. Phys. 2017. V. 164. P. 89; https://doi.org/10.1016/j.jastp.2017.07.019
  11. Kshevetskii S.P., Gavrilov N.M. // J. Atmos. Sol. Terr. Phys. 2005. V. 67. № 11. P. 1014; https://doi.org/10.1016/j.jastp.2005.02.013
  12. Кшевецкий С.П., Гаврилов Н.М. // Изв. РАН. Физика атмосферы и океана. 2014. Т. 50. № 1. С. 76; https://doi.org/10.7868/S0002351513050040
  13. Gettelman A., Mills M.J., Kinnison D.E. et al. // J. Geophys. Res. Atmos. 2019. V. 124. P. 12380; https://doi.org/10.1029/2019JD030943
  14. Richter J.H., Sassi F., Garcia R.R. // J. Atmos. Sci. 2010. V. 67. P. 136; https://doi.org/10.1175/2009JAS3112.1
  15. Akmaev R.A., Forbes J.M., Hagan M.E. // Geophys. Res. Lett. 1996. V. 23. № 16. P. 2173; https://doi.org/10.1029/96GL01977
  16. Akmaev R.A., Yudin V.A., Ortland D.A. // Ann. Geophys. 1997. V. 15. № 9. P. 1187; https://doi.org/10.1007/s00585-997-1187-7
  17. Кшевецкий С.П., Курдяева Ю.А., Гаврилов Н.М. // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 1. С. 44; https://doi.org/10.31857/S0002351523010078
  18. Бахметьева Н.В., Григорьев Г.И., Калинина Е.Е. // Хим. физика. 2022. Т. 41. № 5. С. 441; https://doi.org/10.31857/S0207401X22050028
  19. Лебедь И.В. // Хим. физика. 2022. Т. 41. № 4. С. 81; https://doi.org/10.31857/S0207401X22040045
  20. Кшевецкий С.П. // Журн. вычисл. математики и мат. физики. 2001. Т. 41.№ 2. С. 295.
  21. Richtmayer R.D. Principles of advanced mathematical physics. V. 1. New York: Springer-Verlaq, 1978.
  22. Gossard E.E., Hooke W.H. Waves in the atmosphere. N.Y.: Elsevier Scientific Publ. Co., 1975.
  23. Дикий Л.А. Теория колебаний земной атмосферы. Л.: Гидрометеоиздат, 1969.
  24. Брежнев Ю.В., Кшевецкий С.П., Лебле С.Б. // Изв. РАН. Физика атмосферы и океана. 1994. Т. 30. № 1. С. 86.
  25. Кшевецкий С.П. // Изв. РАН. Физика атмосферы и океана. 1992. Т. 28. № 5. С. 558.
  26. Кшевецкий С.П. // Гидромеханика. 1992. № 65. С. 29.
  27. Кшевецкий С.П. О длинных акустико-гравитационных волнах в атмосфере с произвольной стратификацией плотности. М.: Деп. ВИНИТИ № 4746-B91. 1991.
  28. Kshevetskii S.P., Kurdayeva Y.A, Gavrilov N.M. // Adv. Space Res. 2022. V. 70. № 11. P. 3706; https://doi.org/10.1016/j.asr.2022.08.034

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (47KB)
3.

Download (897KB)
4.

Download (655KB)
5.

Download (1MB)

Copyright (c) 2023 С.П. Кшевецкий, Ю.А. Курдяева, Н.М. Гаврилов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies