Controlling the Sensitivity of Pentaerythritol Tetranitrate to Visible Laser Radiation by the Addition of ZnO:Ag Nanopowder

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The laser initiation threshold energy densities (the laser sensitivity) of pentaerythritol tetranitrate (PETN) containing a nanostructured zinc oxide powder doped with silver (ZnO:Ag) are studied in the article. The second harmonic radiation of a pulsed Nd:YAG laser with a wavelength of 532 nm and a CW laser diode with a wavelength of 450 nm are used for initiation. The ZnO:Ag nanopowder can potentially provide photoinitiation of PETN by the photochemical mechanism. The initiation thresholds via pulsed laser initiation are compared with compositions of PETN and gold nanoparticles, which have similar optical characteristics but are chemically inert. The absorption spectra of materials in the UV, visible, and near-IR spectral regions are studied. The threshold of the laser initiation of the explosion of the PETN–ZnO:Ag composite by pulsed radiation is lower than one-third of the threshold of initiation of the PETN-nanogold composite, which has similar values of optical density. The addition of 1% mass of ZnO:Ag for the first time makes it possible to initiate PETN reliably (without failures) by the radiation of a low-power visible laser diode. The results and their comparison with the published data allow us to make a reasonable assumption on the contribution of the photochemical stages to the laser initiation of the PETN–ZnO:Ag composite by visible laser radiation.

About the authors

A. S. Zverev

Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences

Email: anthon.zverev@yandex.ru
Kemerovo, Russia

A. A. Zvekov

Kemerovo State University

Email: anthon.zverev@yandex.ru
Kemerovo, Russia

V. M. Pugachev

Kemerovo State University

Email: anthon.zverev@yandex.ru
Kemerovo, Russia

Yu. N. Dudnikova

Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences

Email: anthon.zverev@yandex.ru
Kemerovo, Russia

D. M. Russakov

Kemerovo State University

Email: anthon.zverev@yandex.ru
Kemerovo, Russia

D. R. Nurmuhametov

Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences

Email: anthon.zverev@yandex.ru
Kemerovo, Russia

A. Yu. Mitrofanov

Kemerovo State University

Author for correspondence.
Email: anthon.zverev@yandex.ru
Kemerovo, Russia

References

  1. Орленко Л.П. Физика взрыва. В 2 т. М.: Физмалит, 2004.
  2. Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P. // J. Hazard. Mater. 2008. V. 151. № 2–3. P. 289; https://doi.org/10.1016/j.jhazmat.2007.10.039
  3. Talawar M.B., Sivabalan R., Mukundan T. et al. // Ibid. 2009. V. 161. № 2–3. P. 589; https://doi.org/10.1016/j.jhazmat.2008.04.011
  4. Sabatini J.J., Johnson E.C. // ACS omega. 2021. V. 6. № 18. P. 11813; https://doi.org/10.1021/acsomega.1c01115
  5. Muravyev N.V., Monogarov K.A., Schaller U. et al. // Propellants, Explos. Pyrotech. 2019. V. 44. № 8. P. 941; https://doi.org/10.1002/prep.201900060
  6. Гудкова И.Ю., Зюзин И.Н., Лемперт Д.Б. // Хим. физика. 2022. Т. 41. № 1. С. 34; https://doi.org/10.31857/S0207401X2201006X
  7. Zeman S., Jungová M. // Propellants, Explos. Pyrotech. 2016. V. 41. № 3. P. 426; https://doi.org/10.1002/prep.201500351
  8. Sikder A.K., Sikder N. // J. Hazard. Mater. 2004. V. 112. № 1–2. P. 1; https://doi.org/10.1016/j.jhazmat.2004.04.003
  9. Таржанов В.И. Быстрое инициирование ВВ. Особые режимы детонации. Снежинск: Изд-во РФЯЦ-ВНИИТФ, 1998.
  10. Bowden M.D., Cheeseman M., Knowles S.L., Drake R.C. // Proc. Intern. Conf. “Optical Technologies for Arming, Safing, Fuzing, and Firing III”. V. 6662. SPIE, 2007. P. 70; https://doi.org/10.1117/12.734225
  11. Ahmad S.R., Cartwright M. Laser ignition of energetic materials. Chichester: John Wiley & Sons, 2014; https://doi.org/10.1002/9781118683521
  12. De Yong L., Nguyen T., Waschl J. Laser Ignition of Explosives, Pyrotechnics and Propellants: A Review. Report DSTO-TR-0068, Defence Science and Technology Organisation, Aeronautical and Maritime Research Laboratory, Canberra, Australia, 1995.
  13. Brish A.A., Galeev I.A., Zaitsev B.N. et al. // Combust. Explos. Shock Waves. 1969. V. 5. № 4. 326; https://doi.org/10.1007/BF00742068
  14. Aluker E.D., Zverev A.S., Krechetov A.G. et al. // Russ. Phys. J. 2014. V. 56. № 12. P. 1357; https://doi.org/10.1007/s11182-014-0186-x
  15. Fang X., McLuckie W.G. // J. Hazard. Mater. 2015. V. 285. P. 375; https://doi.org/10.1016/j.jhazmat.2014.12.006
  16. Адуев Б.П., Нурмухаметов Д.Р., Крафт Я.В., Исмагилов З.Р. // Хим. физика. 2022. Т. 41. № 3. С. 13; https://doi.org/10.31857/S0207401X22030025
  17. De N.N., Cummock N.R., Gunduz I.E., Tappan B.C. // Combust. and Flame. 2016. V. 167. P. 207; https://doi.org/10.1016/j.combustflame.2016.02.011
  18. Tarzhanov V.I., Sdobnov V.I., Zinchenko A.D., Pogrebov A.I. // Combust. Explos. Shock Waves. 2017. V. 53. № 2. P. 229; https://doi.org/10.1134/S0010508217020149
  19. Aduev B.P., Nurmukhametov D.R., Liskov I.Y. et al. // Combust and Flame. 2020. V. 216. P. 468; https://doi.org/10.1016/j.combustflame.2019.10.037
  20. Kalenskii A.V., Anan’eva M.V., Zvekov A.A., Zykov I.Y. // Combust. Explos. Shock Waves. 2016. V. 52. № 2. P. 234; https://doi.org/10.1134/S0010508216020143
  21. Fang X., Sharma M., Stennett C., Gill P.P. // Combust and Flame. 2017. V. 183. P. 15; https://doi.org/10.1016/j.combustflame.2017.05.002
  22. Wilkins P.R. Laser Deflagration-to-Detonation in Keto-RDX doped with Resonant Hollow Gold Nanoshells (No. LLNL-CONF-656673). 2014; https://www.osti.gov/servlets/purl/1149566
  23. Wang H., Jacob R.J., DeLisio J.B., Zachariah M.R. // Combust and Flame. 2017. V. 180. P. 175; https://doi.org/10.1016/j.combustflame.2017.02.036
  24. Коротких А.Г., Сорокин И.В., Архипов В.А. // Хим. физика. 2022. Т. 41. № 3. С. 41; https://doi.org/10.31857/S0207401X22030074
  25. Tsyshevsky R., Zverev A.S., Mitrofanov A.Y. et al. // J. Phys. Chem. C. 2016. V. 120. № 43. P. 24835; https://doi.org/10.1021/acs.jpcc.6b08042
  26. Kuklja M.M., Tsyshevsky R., Zverev A.S. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 43. P. 25284; https://doi.org/10.1039/D0CP04069J
  27. Ong C.B., Ng L.Y., Mohammad A.W. // Renew. Sust. Energ. Rev. 2018. V. 81. P. 536; https://doi.org/10.1016/j.rser.2017.08.020
  28. Pirhashemi M., Habibi-Yangjeh A., Pouran S.R. // J. Ind. Eng. Chem. 2018. V. 62. P. 1; https://doi.org/10.1016/j.jiec.2018.01.012
  29. Громов В.Ф., Иким М.И., Герасимов Г.Н., Трахтенберг Л.И. // Хим. физика. 2021. Т. 40. № 12. С. 76; https://doi.org/10.31857/S0207401X21120062
  30. Liu Y., Zhang Q., Yuan H. et al. // J. Alloys Compd. 2021. V. 868. P. 8723; https://doi.org/10.1016/j.jallcom.2021.158723
  31. Frens G. // Nature. Phys. Sci. 1973. V. 241. P. 20; https://doi.org/10.1038/physci241020a0
  32. Aduev B.P., Nurmukhametov D.R., Belokurov G.M. et al. // Opt. Spectrosc. 2018. V. 124. № 3. P. 412; https://doi.org/10.1134/S0030400X18030049
  33. Kihara K., Donnay G. // Can. Mineral. 1985. V. 23. № 4. P. 647; https://pubs.geoscienceworld.org/canmin/article-abstract/23/4/647/11836/Anharmonic-thermal-vibrations-in-ZnO
  34. Wyckoff R.W.G., Wyckoff R.W. Crystal structures V. 1. N.Y.: Interscience Publ., 1963.
  35. Aduev B.P., Nurmukhametov D.R., Zvekov A.A. et al. // Tech. Phys. 2019. V. 64. № 2. P. 143; https://doi.org/10.1134/S1063784219020026
  36. Tsyshevsky R.V., Rashkeev S.N., Kuklja M.M. // Surf. Sci. 2015. V. 637. P. 19; https://doi.org/10.1016/j.susc.2015.01.021
  37. Fageria P., Gangopadhyay S., Pande S. // RSC Adv. 2014. V. 4. № 48. P. 24962; https://doi.org/10.1039/C4RA03158J
  38. Gerasimov S.I., Kuz’min V.A., Ilyushin M.A. // Tech. Phys. Lett. 2015. V. 41. № 4. P. 338; https://doi.org/10.1134/S1063785015040070

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (162KB)
3.

Download (760KB)
4.

Download (98KB)
5.

Download (98KB)

Copyright (c) 2023 А.С. Зверев, А.А. Звеков, В.М. Пугачев, Ю.Н. Дудникова, Д.М. Руссаков, Д.Р. Нурмухаметов, А.Ю. Митрофанов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».