Dipole Moment of the S0 → S1 Chlorophyll a Transition in Solvents with a Varied Refraction Index

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dependence of the dipole moment of chlorophyll a’s (Chl) S0 → S1 transition on the value of the solvent refractive index n is calculated. The interactions between the electric field of a light wave, the electronic transition of the pigment to an excited state, and the dielectric polarization of an optical medium are analyzed. The reactive changes in Chl’s transition dipole moment in solvents with different refractive index values are calculated in the time-dependent density functional theory (TD–DFT) using the LC-ωPBE hybrid functional and the polarizable continuum model. The ab initio calculations are approximated by the Onsager reactive field model with an effective polarizability of Chl equal to 21 Å3. The model quantitatively describes the experimental dependence of Chl’s extinction coefficient in solvents with a refractive index of 1.3 < n < 1.7. In a protein environment with a refractive index of n = 1.4, the transition dipole moment of Chl is 5.5 D. For this environment, the distributions of the electrostatic potential in the ground and excited states of Chl are calculated; the ab initio calculations are approximated by a set of partial transient charges located on the heavy atoms of the π-conjugated system of the Chl molecule.

About the authors

D. A. Cherepanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences;
Belozersky Institute of Physico-Chemical Biology, Moscow State University

Email: cherepanov@belozersky.msu.ru
Moscow, Russia; Moscow, Russia

G. E. Milanovsky


Belozersky Institute of Physico-Chemical Biology, Moscow State University

Email: cherepanov@belozersky.msu.ru
Moscow, Russia

A. V. Aybush

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: cherepanov@belozersky.msu.ru
Moscow, Russia

V. A. Nadtochenko

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Faculty of Chemistry, Moscow State University

Author for correspondence.
Email: cherepanov@belozersky.msu.ru
Moscow, Russia; Moscow, Russia

References

  1. Mirkovic T., Ostroumov E.E., Anna J.M. et al. // Chem. Rev. 2017. V. 117. № 2. P. 249; https://doi.org/10.1021/acs.chemrev.6b00002
  2. Zucchelli G., Jennings R.C., Garlaschi F.M. et al. // Biophys. J. 2002. V. 82. № 1. P. 378; https://doi.org/10.1016/S0006-3495(02)75402-7
  3. Madjet M.E., Abdurahman A., Renger T. // J. Phys. Chem. B. 2006. V. 110. № 34. P. 17268;. https://doi.org/10.1021/jp0615398
  4. Seely G.R., Jensen R.G. // Spectrochim. Acta. 1965. V. 21. № 10. P. 1835; https://doi.org/10.1016/0371-1951(65)80095-9
  5. Houssier C., Sauer K. // J. Amer. Chem. Soc. 1970. V. 92. № 4. P. 779; https://doi.org/10.1021/ja00707a007
  6. Colbow K. // BBA – Bioenerg. 1973. V. 314. № 3. P. 320; https://doi.org/10.1016/0005-2728(73)90116-3
  7. Shipman L.L., Cotton T.M., Norris J.R., Katz J.J. // J. Amer. Chem. Soc. 1976. V. 98. № 25. P. 8222; https://doi.org/10.1021/ja00441a056
  8. Linke M., Lauer A., Von Haimberger T. et al. // Ibid. 2008. V. 130. № 45. P. 14904; https://doi.org/10.1021/ja804096s
  9. Shipman L.L. // Photochem. Photobiol. 1977. V. 26. № 3. P. 287; https://doi.org/10.1111/j.1751-1097.1977.tb07486.x
  10. Knox R.S. // Ibid. 2003. V. 77. № 5. P. 492; https://doi.org/10.1562/0031-8655(2003)0770492-daosoc2.0.co2
  11. Oviedo M.B., Sánchez C.G. // J. Phys. Chem. A. 2011. V. 115. № 44. P. 12280; https://doi.org/10.1021/jp203826q
  12. Khokhlov D., Belov A. // Biophys. Chem. 2019. V. 246. P. 16; https://doi.org/10.1016/j.bpc.2019.01.001
  13. Birge R.R., Sullivan M.J., Kohler B.E. // J. Amer. Chem. Soc. 1976. V. 98. № 2. P. 358; https://doi.org/10.1021/ja00418a007
  14. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T. // Gaussian 16. Rev. C. 01. Wallingford CT: Gaussian Inc., 2016.
  15. Yanai T., Tew D.P., Handy N.C. // Chem. Phys. Lett. 2004. V. 393. № 1–3. P. 51; https://doi.org/10.1016/j.cplett.2004.06.011
  16. Henderson T.M., Izmaylov A.F., Scalmani G., Scuseria G.E. // J. Chem. Phys. 2009. V. 131. № 4. P. 044108; https://doi.org/10.1063/1.3185673
  17. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999; https://doi.org/10.1021/cr9904009
  18. Marenich A. V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. № 18. P. 6378; https://doi.org/10.1021/jp810292n
  19. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580; https://doi.org/10.1002/jcc.22885
  20. Черепанов Д.А., Милановский Г.Е., Надточенко В.А., Семёнов А.Ю. // Хим. физика. 2023. Т. 42. № 5.
  21. Chako N.Q. // J. Chem. Phys. 1934. V. 2. № 10. P. 644; https://doi.org/10.1063/1.1749368
  22. Lorentz H.A. The Theory of Electrons. 2nd edn. Leipzig, New York: Dover, 1952.
  23. Onsagbr L. // J. Amer. Chem. Soc. 1936. V. 58. № 8. P. 1486; https://doi.org/10.1021/ja01299a050
  24. Fröhlich H. Theory of Dielectrics: Dielectric Constant and Dielectric Loss. Oxford: Clarendon Press, 1949.
  25. Böttcher C.J.F., van Belle O.C., Bordewijk P., Rip A. Theory of electric polarization. 2nd ed. V. 1. Dielectrics in static fields. Amsterdam, New York: Elsevier Scientific Pub. Co, 1974.
  26. Mulliken R.S., Rieke C.A. // Rep. Prog. Phys. 1941. V. 8. № 1. P. 231; https://doi.org/10.1088/0034-4885/8/1/312
  27. Pickett L.W., Paddock E., Sackter E. // J. Amer. Chem. Soc. 1941. V. 63. № 4. P. 1073; https://doi.org/10.1021/JA01849A051/ASSET/JA01849-A051.FP.PNG_V03
  28. Jacobs L.E., Platt J.R. // J. Chem. Phys. 1948. V. 16. № 12. P. 1137; https://doi.org/10.1063/1.1746745
  29. Neporent B.S., Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 634. P. 1954.
  30. Moffitt W., Moscownz A. // J. Chem. Phys. 1959. V. 30. № 3. P. 648; https://doi.org/10.1063/1.1730025
  31. Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 255.
  32. Lorenz L. // Ann. Phys. 1880. V. 247. № 9. P. 70; https://doi.org/10.1002/andp.18802470905
  33. Pacak P. // J. Solut. Chem. 1987. V. 16. № 1. P. 71; https://doi.org/10.1007/BF00647016
  34. Bakhshiev N.G. // Opt. Spectrosc. 1958. V. 5. № 646. P. 1954.
  35. Schuyer J. // Recl. des Trav. Chim. des Pays-Bas. 1953. V. 72. № 11. P. 933; https://doi.org/10.1002/recl.19530721104
  36. Bakhshiev N.G., Girin O.P., Libov V.S. // Opt. Spectrosc. 1963. V. 14. P. 395.
  37. Liptay W. // Z. Naturforschg. A. 1966. V. 21. № 10. P. 1605; https://doi.org/10.1515/zna-1966-1010
  38. Weigang O.E. // J. Chem. Phys. 1964. V. 41. № 5. P. 1435; https://doi.org/10.1063/1.1726086
  39. Хохлова С.С., Михайлова В.А., Иванов А.И. // Хим. физика. 2007. Т. 26. № 7. С. 27.
  40. Karakas A., Ceylan Y., Karakaya M. et al. // Open Chem. 2018. V. 16. № 1. P. 1242; https://doi.org/10.1515/chem-2018-0134
  41. Knox R.S., van Amerongen H. // J. Phys. Chem. B. 2002. V. 106. № 20. P. 5289; https://doi.org/10.1021/jp013927+
  42. Knox R.S., Spring B.Q. // Photochem. Photobiol. 2003. V. 77. № 5. P. 497; https://doi.org/10.1562/0031-8655(2003)0770497-dsitc2.0.co2
  43. Adolphs J., Müh F., Madjet M.E.A. et al. // J. Amer. Chem. Soc. 2010. V. 132. № 10. P. 3331; https://doi.org/10.1021/ja9072222
  44. Novoderezhkin V.I., Palacios M.A., Van Amerongen H., Van Grondelle R. // J. Phys. Chem. B. 2005. V. 109. № 20. P. 10493; https://doi.org/10.1021/jp044082f
  45. Adolphs J., Müh F., Madjet M.E.A., Renger T. // Photosynth. Res. 2008. V. 95. № 2–3. P. 197; https://doi.org/10.1007/s11120-007-9248-z
  46. Krawczyk S. // BBA – Bioenerg. 1991. V. 1056. № 1. P. 64; https://doi.org/10.1016/S0005-2728(05)80073-8
  47. Altmann R.B., Haarer D., Renge I. // Chem. Phys. Lett. 1993. V. 216. № 3–6. P. 281; https://doi.org/10.1016/0009-2614(93)90095-I
  48. Хохлова С.С., Михайлова В.А., Иванов А.И. // ЖФХ. 2008. Т. 82. № 6. С. 1161.
  49. Van Manen H.J., Verkuijlen P., Wittendorp P. et al. // Biophys. J. 2008. V. 94. № 8. P. L67; https://doi.org/10.1529/biophysj.107.127837
  50. Vörös J. // Biophys. J. 2004. V. 87. № 1. P. 553; https://doi.org/10.1529/biophysj.103.030072
  51. Zölls S., Gregoritza M., Tantipolphan R. et al. // J. Pharm. Sci. 2013. V. 102. № 5. P. 1434; https://doi.org/10.1002/jps.23479
  52. Byrdin M., Jordan P., Krauss N. et al. // Biophys. J. 2002. V. 83. № 1. P. 433; https://doi.org/10.1016/S0006-3495(02)75181-3
  53. Yang M., Damjanović A., Vaswani H.M., Fleming G.R. // Ibid. 2003. V. 85. № 1. P. 140; https://doi.org/10.1016/S0006-3495(03)74461-0
  54. Akhtar P., Caspy I., Nowakowski P.J. et al. // J. Amer. Chem. Soc. 2021. V. 143. № 36. P. 14601; https://doi.org/10.1021/jacs.1c05010
  55. Kimura A., Kitoh-Nishioka H., Aota T., et al. // J. Phys. Chem. B. 2022. V. 126. № 22. P. 4009; https://doi.org/10.1021/acs.jpcb.2c00869
  56. Philipson K.D., Cheng Tsai S., Sauer K. // J. Phys. Chem. 1971. V. 75. № 10. P. 1440; https://doi.org/10.1021/J100680A013/ASSET/J100-680A013.FP.PNG_V03

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (114KB)
3.

Download (64KB)
4.

Download (213KB)

Copyright (c) 2023 Д.А. Черепанов, Г.Е. Милановский, А.В. Айбуш, В.А. Надточенко

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».