Structural Features of Polylactide Films Obtained from a Melt and Solution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The morphology and structure of polylactide film samples obtained from a melt and from a solution in chloroform are studied. The crystallization process of polylactide takes place under nonisothermal conditions. It is determined that the melting and crystallization points of the polylactide sample obtained from the solution are, respectively, 2 and 4°C lower than the sample obtained from the melt. Using optical polarization microscopy, it is shown that the sample obtained from the solution has a spherulite structure, while spherulites are not detected in the polylactide sample obtained from the melt. The X-ray diffraction patterns of the polylactide samples crystallized from the solution and melt are different. Well-defined reflexes characteristic of the crystalline modification of the α-form are recorded on the diffractogram of the sample obtained from the solution. The pressed polylactide sample has an initially X-ray amorphous structure, which partially transforms into a crystalline structure during annealing for 60 min at 90°C. X-ray diffraction analysis revealed differences in the degree of crystallinity over the thickness of the polylactide sample obtained from the solution.

About the authors

Yu. V. Tertyshnaya

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia; Plekhanov Russian University of Economics, Moscow, Russia

Email: terj@rambler.ru
Россия, Москва; Россия, Москва

A. V. Krivandin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: terj@rambler.ru
Россия, Москва

O. V. Shatalova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: terj@rambler.ru
Россия, Москва

References

  1. Nampoothiri K.M., Nair N.R., John R.P. // Bioresour. Technol. 2010. V. 101. P. 8493; https://doi.org/10.1016/j.biortech.2010.05.092
  2. Тертышная Ю.В., Хватов А.В., Попов А.А. // Хим. физика. 2022. Т. 41. № 2. С. 86; https://doi.org/10.31857/S0207401X22020133
  3. Xiao L., Wang B., Yang G., Gauther M. Biomedical Science, Engineering and Technology / Ed. Ghista D.N. London, UK: Intech Open, 2012. Ch. 11. P. 247; https://doi.org/10.5772/1020
  4. Роговина С.З., Алексанян К.В., Владимиров Л.В., Берлин А.А. // Хим. физика. 2019. Т. 38. № 9. С. 39; https://doi.org/10.1134/S0207401X19090097
  5. Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
  6. Попов А.А., Зыкова А.К., Масталыгина Е.Е. // Хим. физика. 2020. Т. 39. № 6. С. 71; https://doi.org/10.31857/S0207401X20060096
  7. Варьян И.А., Колесникова Н.Н., Попов А.А. // Хим. физика. 2021. Т. 40. № 12. С. 42; https://doi.org/10.31857/S0207401X21120153
  8. Yasuniwa M., Iura K., Dan Y. // Polymer. 2007. V. 48. P. 5398; https://doi.org/10.1016/j.polymer.2007.07.012
  9. Vasanthakumari R., Pennings A.J. // Ibid. 1983. V. 24. P. 175.
  10. Miyata T., Masuko T. // Ibid. 1998. V. 39. P. 5515.
  11. Wasanasuk K., Tashiro K., Hanesaka M. et al. // Macromolecules. 2011. V. 44. P. 6441.
  12. Kobayashi J., Asahi T., Ichiki M. et al. // J. Appl. Phys. 1995. V. 77. P. 2957.
  13. Puiggali J., Ikada Y., Tsuji H., Lotz B. // Polymer. 2000. V. 41. P. 8921.
  14. Ohtani Y., Okumura K., Kawaguchi A. // J. Macromol. Sci. Phys.: B. 2003. V. 42. P. 875; https://doi.org/10.1081/MB-120021612
  15. Hoogsten W., Postema A.R., Pennings A.J., Brinke G., Zugenmaier P. // Macromolecules. 1990. V. 23. P. 634.
  16. Cartier L., Okihara T., Ikada Y., Tsuji H., Puiggali J., Lotz B. // Polymer. 2000. V. 41. P. 8909.
  17. Wang H., Zhang J., Tashiro K. // Macromolecules. 2017. V. 50. P. 3285.
  18. Тертышная Ю.В., Карпова С.Г., Шаталова О.В., Кривандин А.В., Шибряева Л.С. // Высокомолекуляр. соединения. Сер. А. 2016. Т. 58. № 1. С. 54; https://doi.org/10.7868/S2308112016010119
  19. Lim L.-T., Auras R., Rubino M. // Prog. Polym. Sci. 2008. V. 33. P. 820; https://doi.org/10.1016/j.progpolymsci.2008.05.004
  20. Krivandin A.V., Solov’eva A.B., Glagolev N.N., Shatalova O.V., Kotova S.L. // Polymer. 2003. V. 44. P. 5789.
  21. Кривандин А.В., Фаткуллина Л.Д., Шаталова О.В., Голощапов А.Н., Бурлакова Е.Б. // Хим. физика. 2013. Т. 32. № 5. С. 91.
  22. Вайнштейн Б.К. Дифракция рентгеновых лучей на цепных молекулах. М.: Изд-во АН СССР, 1963.
  23. Lorenzo M.L. // Europ. Polym. J. 2005. V. 41. P. 569; https://doi.org/10.1016/j.eurpolymj.2004.10.020
  24. Xu J., Guo B.-H., Zhou J.-J., Li L., Wu J., Kowalczuk M. // Polymer. 2005. V. 46. P. 9176.
  25. Yasuniwa M., Tsubakihara S., Iura K. et al. // Ibid. 2006. V. 47. P. 7554; https://doi.org/. Yasuniwa M., Sakamo K., Ono Y., Kawahara W. // Ibid. 2008. V. 49. P. 1943; https://doi.org/10.1016/j.polymer.2006.08.054
  26. Yasuniwa M., Sakamo K., Ono Y., Kawahara W. // Ibid. 2008. V. 49. P. 1943; https://doi.org/10.1016/j.polymer.2008.02.034
  27. Zhang J., Tashiro K., Tsuji H., Domb A.J. // Macromolecules. 2008. V. 4. P. 1352; https://doi.org/10.1021/ma0706071
  28. Huang Z., Zhong M., Yang H. et al. // Polymers. 2021. V. 13. 3377; https://doi.org/10.3390/polym13193377
  29. Zhang L., Zhao G., Wang G. // Ibid. 2021. V. 13. 3280; https://doi.org/10.3390/polym13193280
  30. Hu C., Lv T., Li J., Huang S. et al. // ACS Appl. Polym. Mater. 2019. V. 1. P. 2552; https://doi.org/10.1021/acsapm.9b00722
  31. Wasanasuk K., Tashiro K. // Polymer. 2011. V. 52. P. 6097; https://doi.org/10.3390/polym13193280

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (47KB)
4.

Download (72KB)
5.

Download (49KB)
6.

Download (66KB)

Copyright (c) 2023 Ю.В. Тертышная, А.В. Кривандин, О.В. Шаталова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».