Features of the Structure and Dynamics of Water in the Northern Half of the Sea of Japan in Autumn-Winter Period According to Satellite Data and Ship Observation

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of studies of the structure and dynamics of water in the zone of a large-scale cyclonic gyre in the northern half of the Sea of Japan are presented, where satellite IR images annually in the autumn-winter period most clearly show two areas of low temperatures, separated by the influx of warm Tsushima waters from Japan. The location of these thermal structures coincides with the location of the western and northern cyclonic gyres, which are inextricably linked with deep upwelling. During the autumn-winter periods 2019-2021 it has been established that deep upwelling in the northwestern part of the Sea of Japan extends from the bottom to the surface layer, focusing along the axial line passing through the Pervenets Rise and the Bersenev and Vasilkovsky ridges in the area of 42° N. between 132°E and 135.5° E. The western cyclonic gyre, located in the western part of the large-scale cyclonic gyre in the region of the considered deep upwelling, is a large topographic eddy. In the northern part of the large-scale cyclonic gyre, deep upwelling is confined to the continental clone, and the small northern cyclonic gyre is also located there. It is assumed that in the autumn-winter period the interaction of anticyclones that form vortex belts with cyclonic gyres leads to an increase in deep circulation. The peculiarity of the variability of the speed of deep currents - an increase from October to March, is probably due to the nature of the development of vertical and transverse horizontal circulation in the system of cyclonic gyres - vortex belts as a result of the intensification of deep upwelling with increased winds from the northern directions in winter.

Full Text

Restricted Access

About the authors

A. F. Sergeev

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Author for correspondence.
Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

V. B. Lobanov

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

V. A. Goryachev

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

N. V. Shlyk

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

E. N. Maryina

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

N. B. Lukyanova

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

I. I. Gorin

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

V. Tsoy

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

S. A. Zverev

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

A. Yu. Yurtsev

National Operator of Research Fleet

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

I. A. Prushkovskaya

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

S. Y. Ladychenko

V.I. Il’ichev Pacific Oceanological Institute (POI FEB RAS)

Email: sergeev@poi.dvo.ru
Russian Federation, Vladivostok

References

  1. Aleksanin A.I., Aleksanina M.G. Monitoring termicheskih struktur poverhnosti okeana po dannym IK-kanala sputnikov NOAA na primere Prikuril’skogo rayona Tihogo okeana // Sovremennye problem distantsyonnogo zondirovaniya Zemli iz kosmosa. Fizicheskiye osnovy, metody i tehnologii monitoringa okruzhayuschey sredy, potentsial’no opasnyh yavleniy i ob’ektov. M.: Azbuka-2000, 2006. T. 2. Vyp. 3. P. 9‒15.
  2. Batalin A.M. Plotnost’ [Density] // Gidrologicheskiy spravochnik morey SSSR. L.: Gidrometeoizdat, 1958. T. 8. Vyp. 2. P. 244‒263. (In Russian).
  3. Choi Y.J., Yoon J.-H. Structure and seasonal variability of the deep mean circulation of the East Sea (Sea of Japan) // J. Oceanogr. 2010. V. 66. Is. 3. P. 349–361.
  4. Danchenkov M.A., Riser S.C., Yoon J.-H. Glubinnyye techeniya tsentralnoy chasti Yaponskogo morya [Deep currents of the Central Sea of Japan] // Podvodnyye tekhnologii i mir okeana. 2005. №. 3. P. 58‒63. (In Russian).
  5. Darnitskiy V.B. Okeanologicheskie protsesy vblizi podvodnykh gor i khrebtov otkrytogo okeana [Oceanological processes near seamounts and open ocean ridges] // Vladivostok: TINRO-Center. 2010. 199 p. (In Russian).
  6. Goncharenko I.A., Federyakov V.G., Lazaryuk A.Yu., Ponomarev V.I. Tematicheskaya obrabotka dannykh AVHRR na primere izucheniya pribrezhnogo apvellinga [Thematic processing of AVHRR data using the example of studying coastal upwelling] // Issledovanie Zemli iz kosmosa. 1993. № 2. P. 97‒108. (In Russian).
  7. Hogan P.J., Hurlburt H.E. Impact of upper ocean–topographical coupling and isopycnal out-cropping in Japan/East Sea models with 1/8 to 1/64 resolution // J. Phys. Oceanogr. 2000. V. 30. № 10. Р. 2535–2561.
  8. Istoshin Yu.V. Temperatura vody Yaponskogo morya i vozmozhnost’ ee prognoza [Temperature of the water of the Sea of Japan and the possibility of its forecast] // Trudy okeanograficheskoy komissii AN SSSR. 1960. T. 7. P. 52–97. (In Russian).
  9. Kang S.K., Seung Y.H., Park J.J., Park J.-H., Lee J.H., Kim E.J., Kim Y.H., Suk M.-S. Seasonal variability in middepth gyral circulation patterns in the central East/Japan Sea as revealed by long-term Argo data // J. Phys. Oceanogr. 2000. V. 46. Р. 937‒946. doi: 10.1175/JPO-D-15-0157.1.
  10. Kozlov V.F., Darnitsky V.B. Topograficheskiy tsyklogenez v okeane [Topographic cyclogenesis in the ocean] // Trudy DVNII. 1981. Vyp. 83. P. 85‒100. (In Russian).
  11. Leonov A.K. Vodnyye massy Yaponskogo morya [Water masses of the Sea of Japan] // Meteorologiya i gidrologiya. 1948. № 6. P. 61‒78. (In Russian).
  12. Leonov A.K. Yaponskoye more [The Japan Sea] // Regional’naya oceanografiya. Chast’ 1. L.: Gidrometeoizdat. 1960. P. 291‒463. (In Russian).
  13. Lobanov V.B., Ponomarev V.I., Salyuk A.N., Tischenko P.Ya., Tully L.D. Struktura i dinamika sinopticheskikh vikhrey severnoy chasti Yaponskogo morya [Structure and dynamics of synoptic eddies in the northern part of the Sea of Japan] // Dal’nevostochnyye morya Rossii. Kn. 1. Okeanologicheskiye issledovaniya / Gl. red. V.A. Akulichev. M.: Nauka. 2007. P. 450‒473. (In Russian).
  14. Lobanov V.B., Sergeev A.F., Navrotsky V.V., Voronin A.A., Gorin I.I., Pavlova E.P. Instrumental’nyye nablyudeniya kaskadinga na sklone zaliva Petra Velikogo Yaponskogo morya [Instrumental observations of cascading on the slope of Peter the Great Bay, Sea of Japan] // Trudy konferentsii: “Sovremennyye metody i sredstva okeanologicheskikh issledovaniy (MCOI-2019)”. T. 1. M.: IO RAN, 2019. P. 104–108. (In Russian).
  15. Lobanov V.B., Sergeev A.F., Shlyk N.V., Voronin A.A., Gorin I.I., Tsoy V., Goryachev V.A., Kraynikov G.A., Zverev S.A., Rudykh Ya.N., Mar’ina E.N., Prushkovskaya I.A., Luk’yanova N.B., Telichko A.S. Sinopticheskaya dinamika vod severo-zapadnoy chasti Yaponskogo morya v osenniy period (po rezul’tatam 57-go reysa NIS “Akademik Oparin” [Synoptic dynamics of the waters of the northwestern part of the Sea of Japan in the autumn period (based on the results of the 57th cruise of the R/V “Akademik Oparin” ] // Fizika geosfer. Dvennadtsatyy Vserossiyskiy simpozium, 6–10 sentyabrya 2021 g. Vladivostok, Rossiya, 2021. P. 71‒73. (In Russian). Elektronnyy resurs. Rezhim dostupa: https://www.poi.dvo.ru/conf/phg2021.
  16. Metodicheskiye ukazaniya po kompleksnomu ispol’zovaniyu sptutnikovoy informatsii dlya izucheniya morey // L.: Gidrometeoizdat. 1987. 144 p.
  17. Mokievskaya V.V. Khimicheskaya kharakteristika vodnykh mass [Chemical characteristics of water masses] // Osnovnyye cherty geologii i gidrologii Yaponskogo morya / Otv. red. V.N. Stepanov. M.: Izd-vo AN SSSR. 1961. P. 122–131. (In Russian).
  18. Nikitin A.A., Lobanov V.B., Danchenkov M.A. Vozmozhnyye puti perenosa teplykh subtropicheskikh vod v rayon Dal’nevostochnogo morskogo zapovednika [Possible ways of transfer of warm subtropical waters to the region of the Far Eastern Marine Reserve] // Izvestiya TINRO. 2002. T. 131. P. 41‒53. (In Russian).
  19. Nikitin A.A., Yurasov G.I. Sinopticheskiye vikhri Yaponskogo morya po sputnikovym dannym [Synoptic eddies of Japan Sea based on the satellite data] // Issledovanie Zemli iz kosmosa. 2008. № 5. P. 42‒57. (In Russian).
  20. Nikitin A.A., Danchenkov M.A., Lobanov V.B., Yurasov G.I. Novaya shema poverhnostnoy tsirkulyatsii Yaponskogo moray s uchetom sinopticheskih vihrey // Izvestiya TINRO. 2009. T. 157. P. 158‒167. (In Russian).
  21. Nikitin A.A., Yurasov G.I., Vanin N.S. Sputnikovyye nablyudeniya sinopticheskikh vikhrey i geostraficheskaya tsyrkulyatsiya vod Yaponskogo morya [Satellite observations of synoptic eddies and geostrophic circulation of waters of the Japan Sea] // Issledovanie Zemli iz kosmosa. 2012. № 2. P. 28‒40. (In Russian).
  22. Nikitin A.A., Yurasov G.I. Poverhnostnye termicheskiye fronty v Yaponskom more // Izvestiya TINRO. 2017. T. 148. P. 170‒192. (In Russian).
  23. Nikitin A.A., Dyakov B.S., Kapshiter A.V. Primorskoye techeniye na standartnykh razrezakh i sputnikovykh izobrazheniyakh Yaponskogo morya [Primorsky current on standard sections and satellite images of the Sea of Japan] // Issledovanie Zemli iz kosmosa. 2020. № 1. P. 31‒43. (In Russian).
  24. Panfilova S.G. Temperatura vod [Water temperature] // Osnovnyye cherty geologii i gidrologii Yaponskogo morya / Otv. red. V.N. Stepanov. M.: Izd-vo AN SSSR. 1961. P. 155‒169. (In Russian).
  25. Pokudov V.V., Man’ko A.N., Khlusov A.N. Osobennosti gidrologicheskogo rezhima vod Yaponskogo morya v zimniy period [Features of the hydrological regime of the waters of the Sea of Japan in winter] //Trudy DVNIGMI. 1976. Vyp. 60. P. 74‒115. (In Russian).
  26. Pokudov V.V., Tunegolovets V.P. Novaya ckhema techeniy Yaponskogo morya dlya zimnego perioda [New scheme of currents in the Sea of Japan for the winter period] // Trudy DVNII. 1975. Vyp. 50. P. 24‒32. (In Russian).
  27. Prants S.V., Uleysky M.Yu., Budyansky M.V. Lagranzhev analiz putey perenosa subtropicheskich vod k beregam Primor’ya [Lagrangian analysis of the transport pathways of subtropical waters to the shores of Primorye] // DAN. 2018. T. 481. № 6. P. 666‒670. (In Russian).
  28. Rekomendatsii po ispol’zovaniyu sputnikovyh IK snimkov v okeanologicheskih issledovaniyah // Vladivostok. TINRO. 1984. 43 p.
  29. Senjyu T, Shin H.-R., Yoon J.-H., Nagano Z., An H.-S., Byun S.-K., Lee C.-K. Deep floow field in the Japan/East Sea as deduced from direct current measurements // Deep Sea Res. II. 2005. V. 52. No. 11‒13. P. 1726–1741.
  30. Sergeev A.F., Matveev V.I., Lobanov V.B., Gorin I.I., Kotenko B.M., Starikov A.G. Izmenchivost’ pridonnoy temperatury vody v pribrezhnoy zone Primor’ya v 2003-2007 gg. // Tezisy dokladov Tret’ey Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Morskiye pribrezhnye ekosistemy. Vodorosli, bespozvonochye i produkty ih pererabotki”. Vladivostok. TINRO-Tsentr. 2008. P. 207‒208.
  31. Schlitzer R. Ocean Date View. 2019. Электронный ресурс. Режим доступа: https ://odv.awi.de.
  32. Stepanov V.N. Obschaya kharakteristika gidrologii Yaponskogo morya [General characteristics of the hydrology of the Sea of Japan] // Osnovnyye cherty geologii i gidrologii Yaponskogo morya / Otv. red. V.N. Stepanov. M.: Izd-vo AN SSSR. 1961. P. 102‒107. (In Russian).
  33. Takematsu M., Nagano Z., Ostrovskii A.G., Kim K., Volkov Y. Direct Measurements of Deep Currents in the Northen Japan Sea // Journal of Oceanography. 1999. V. 55. No. 2. P. 207–216.
  34. Takematsu M., Ostrovskii A.G., Nagano Z. Observations of Eddies in the Japan Basin Interior // Journal of Oceanography. 1999. V. 55. No. 2. P. 237–246.
  35. Talley L.D., Lobanov V., Ponomarev V., Salyuk A., Tishchenko P., Zhabin I., Riser S. Deep convection and brine rejection in the Japan Sea // Geophys. Res. Lett. 2003. Vol. 30. No. 4. Р. 1–4. doi: 10.1029/20002GL016451.
  36. Talley L.D., Tishchenko Р., Luchin V., Nedashkovskiy A., Sagalaev S., Kang D.-J., Warner M. and Min D.-H. Atlas of Japan (East) Sea hydrographic properties in summer, 1999: Supplementary material // Progress in Oceanography. 2004. V. 61. Is. 2–4. P. 277‒348. doi: 10.1016/j.pocean.2004.06.011.
  37. Taranova S.N., Yurasov G.I., Zhabin I.A. Sezonnaya izmenchivost’ poverkhnostnoy tsirkulyatsii vod severnoy chasti Yaponskogo morya po dannym dreyfuyuschikh buyev [Seasonal variability of surface water circulation in the northern part of the Sea of Japan according to drifting buoy data] // Izvestiya TINRO. 2018. T. 192. P. 177‒183. (In Russian).
  38. Trusenkova O.O. Sezonnyye i mezhgodovyye izmeneniya tsirkulyatsii vod Yponskogo morya [Seasonal and interannual changes in water circulation in the Sea of Japan] // Dal’nevostochnyye morya Rossii. Kn. 1. Okeanologicheskiye issledovaniya / Gl. red. V.A. Akulichev. M.: Nauka. 2007. P. 280‒306. (In Russian).
  39. Trusenkova O.O. Modelirovaniye glubinnykh techeniy Yaponskogo morya: vzaimosvyaz’ s techeniyami v piknokline [Modeling of deep currents in the Sea of Japan: relationship with currents in the pycnocline] // Izvestiya TINRO. 2018. T. 192. P. 184‒201. (In Russian).
  40. Trusenkova O.O., Stanichnyy S.V., Ratner Yu.B. Osnovnye mody izmenchivosti i tipovye polya vetra nad Yaponskim morem i prilegayuschimi rayonami sushy [Main modes of variability and typical wind fields over the Sea of Japan and adjacent land areas] // Izvestiya RAS. FAO. 2007. T. 43. № 5. P. 688‒703. (In Russian).
  41. Vanin N.S. Anomal’nye termicheskie usloviya severo-zapadnoy chasti Yaponskogo morya osen’yu 2003 g. [Anomalous thermal conditions in the northwestern part of the Sea of Japan in the fall of 2003] // Izvestiya TINRO. 2004. T. 138. P. 345‒354. (In Russian).
  42. Vasil’ev A.S., Makashin V.P. Ventilyatsiya vod Yaponskogo morya v zimniy period [Ventilation of waters of the Sea of Japan in winter] // Meteorologiya i gidrologiya. 1991. № 2. P. 71‒79. (In Russian).
  43. Yarichin V.G. Nekotoryye osobennosti gorizontal’nogo dvizheniya vod v Yaponskom more k severu ot 40 s. sh. [Some features of horizontal water movement in the Sea of Japan north of 40 N] // Trudy DVNII. 1982. Vyp. 96. P. 111‒121. (In Russian).
  44. Yarichin V.G., Pokudov V.V. Formirovaniye strukturnykh osobennostey gidrofizicheskikh poley i techeniy v severnoy glubokovodnoy chasti Yaponskogo morya [Formation of structural features hydrophysical fields and currents in the northern deep-water part of the Sea of Japan] // Trudy DVNII. 1982. Vyp. 96. P. 86‒95. (In Russian).
  45. Yoon J.-H., Abe K., Ogata T., Wakamatsu Y. The effects of wind-stress curl on the Japan/East Sea Circulation // Deep Sea Res. II. 2005. V. 52. No. 11–13. P. 1827‒1844.
  46. Yurasov G.I., Yarichin V.G. Techeniya Yaponskogo morya [Currents of the Sea of Japan] // Vladivostok. Izd-vo DVO AN SSSR. 1991. 174 p. (In Russian).
  47. Yurasov G.I. Osobennosti struktury i dinamiki vod severnoy chasti Yaponskogo morya [Features of the structure and dynamics of waters in the northern part of the Sea of Japan] // Tikhookeanskiy okeanologicheskiy institut DVNTS AN SSSR. Vladivostok. 1995. 28 p. Dep. VINITI 01/27/95. № 468-B95 (In Russian).
  48. Yurasov G.I., Vanin N.S., Rudykh N.I. Klimaticheskiye kharakteristiki techeniy Yaponskogo morya po dannym raschetov dinamicheskim metodom [Climatic characteristics of currents in the Sea of Japan according to calculations using the dynamic method] // Izvestiya TINRO. 2011. T. 164. P. 340‒347. (In Russian).
  49. Zhabin I.A., Gramm-Osipova O.L., Yurasov G.I. Vetrovoy apvelling u severo-zapadnogo poberezh’ya Yaponskogo morya [Wind upwelling off the northwestern coast of the Sea of Japan] //Meteorologiya i gidrologiya. 1993. № 10. P. 82‒86. (In Russian).
  50. Zyryanov V.N. Topograficheskie vikhri v dinamike morskikh techeniy [Topographic eddies in the dynamics of sea currents] // M.:IVP RAS. 1995. 240 p. (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the STD stations (●): a ‒ flight No. 57 of the NIS Akademik Oparin on October 2-21, 2019; b ‒ flight No. 97 of the NIS Akademik M.A. Lavrentiev on December 7-28, 2021. The triangle indicates the location of the bottom monitoring station. The polyline shows the location of the northeastern section.

Download (567KB)
3. Fig. 2. Thermal structure of the surface of the Sea of Japan according to satellite IR images in September–November 2019 and December 2021. In September and October, the temperature scales range from 5 °C to 31 °C, in November and December ‒ from 0  C to 26 C. In the image dated November 12, 2019, a black segment indicates the incision, the results of which are shown in Fig. 8.

Download (2MB)
4. Fig. 3. Variability of temperature (red) and salinity (blue) at the bottom (22 m) monitoring station installed on June 7, 2019 in the coastal zone of southern Primorye to the southwest of the island. Russian.

Download (136KB)
5. Fig. 4. Distribution of potential water temperature in October 2019 on the surface (a) and horizons of 100 m (b) and 1000 m (c); the relief of the bottom of the work area is a white line passing through the Pervenets hill and the Bersenev and Vasilkovsky ridges coincides with the centerline of the area of maximum elevation of deep waters, allocated according to the minimum temperatures in Figures b and c–G. Points (·) – the location of the stations. The vortex formations are indicated in Latin letters in Figures a, b and c.

Download (477KB)
6. Fig. 5. Distribution of potential temperature in a section of 134°c (a) and a section directed from southwest to northeast (Fig. 1a) through the central region of deep upwelling (b) in October 2019. Vertical thin lines are the location of the stations.

Download (185KB)
7. Fig. 6. Potential temperature distributions at the horizons of 300 m (a) and 1000 m (b) in December 2021. Points (·) are the location of the stations. The vortex formations are indicated in Latin letters in Figures a and b.

Download (185KB)
8. Fig. 7. Distributions of the potential temperature (a, b) and the zonal component of the geostrophic velocity (c, d) (plus sign – the flow is directed to the east, minus – to the west) in sections of 134 vd according to the expeditions of the NIS “Academician M.A. Lavrentiev" (December 7-28, 2021, flight No. 97) ‒ a and b, respectively, and NIS Akademik Oparin (December 14-29, 2020, flight No. 62) ‒ b and d, respectively. The vertical thin lines in Fig. a and b are the location of the stations.

Download (378KB)
9. Fig. 8. Distribution of potential temperature (a) and velocity of geostraphic currents perpendicular to the section made on November 11-12, 2019 in the expedition of the NIS Akademik Oparin (flight No. 58) in the northeastern region of low temperature (b). The plus sign - the flow is directed to the northeast, minus – to the south- the west. The vertical thin lines in Figure a represent the location of the stations. The section is shown in the satellite image from November 12, 2019 in Fig. 2.

Download (159KB)
10. Fig. 9. a is an image of the northern half of the Sea of Japan in the infrared range from the NOAA satellite for October 9, 2019. anticyclonic vortex formations are indicated in Latin letters in the figure; the CCC area is outlined with a black line; white lines are cyclonic cycles: western (WCC), eastern (WCC) and northern (CCC). b is a drawing from (Nikitin, Yurasov, 2008). The Latin letters in the figure indicate the anticyclones established by satellite data for 1988-1996. The darkened circles indicate quasi-stationary anticyclones. The inset shows a generalized diagram of surface thermal fronts in the Sea of Japan.

Download (412KB)
11. Fig. 10. Simplified scheme of vertical circulation in the section of 134 VD in December 2021.

Download (70KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».