Measurements of total ozone content in the 4.7 µm region with a medium-resolution FTIR spectrometer and comparison with satellite data

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The total ozone content (TOC) measurements results by the ground-based MR-32 instrument in 2015–2022 at the Obninsk station (55.11N; 36.60E) are presented. Solar radiation was measured by the FTIR spectrometer of medium resolution of 0.12 cm−1. Based on the analysis of the absorption spectra the relevant spectral intervals in the region of 4.7 microns were determined. The SFIT4 program was applied to retrieve total ozone content. A comparison of the results of TOC measurements by the MR-32 instrument with satellite data of OMPS, OMI, and SBUV(MOD) showed good agreement. The correlation coefficients are 0.93–0.97. According to spectral and cross-correlation wavelet analysis, ground and satellite oscillations with periods from 4 to 60 months occur of almost synchronously. The systematic discrepancies between daily average ground-based and satellite TO measurements are (−0.8 ± 3.6)%, (−0.2 ± 3.7)% and (−2 ± 5)% for OMPS, OMI and SBUV(MOD), respectively.

About the authors

K. N. Visheratin

Research and Production Association Taifun

Author for correspondence.
Email: kvisher@rpatyphoon.ru
Russian Federation, Kaluga oblast, Obninsk

E. L. Baranova

Research and Production Association Taifun

Email: kvisher@rpatyphoon.ru
Russian Federation, Kaluga oblast, Obninsk

G. I. Bugrim

Research and Production Association Taifun

Email: kvisher@rpatyphoon.ru
Russian Federation, Kaluga oblast, Obninsk

E. I. Krasnopeeva

Research and Production Association Taifun

Email: kvisher@rpatyphoon.ru
Russian Federation, Kaluga oblast, Obninsk

V. P. Ustinov

Research and Production Association Taifun

Email: kvisher@rpatyphoon.ru
Russian Federation, Kaluga oblast, Obninsk

A. V. Shilkin

Research and Production Association Taifun

Email: kvisher@rpatyphoon.ru
Russian Federation, Kaluga oblast, Obninsk

References

  1. Arefyev V.N., Visheratin K.N. Molekulyarnoye pogloshcheniye izlucheniya v okne prozrachnosti atmosfery 3,5–4,1 mkm [Molecular absorption of radiation in the atmospheric transparency window of 3.5–4.1 microns] // Proceedings of IEM. 1980. Issue 10(84). P. 91–101. (In Russian).
  2. Virolaynen Ya.A., Timofeyev Yu.M., Poberovskiy A.V., Polyakov A. V., Shalamyanskiy A. M. Empiricheskiye otsenki pogreshnostey izmereniy obshchego soderzhaniya ozona razlichnymi metodami i priborami [Empirical estimates of measurement errors of total ozone content by various methods and instruments // Optics of atmosphere and ocean. 2017. V. 30. No. 2. P. 170–176. doi: 10.15372/AOO20170210. (In Russian).
  3. Visheratin K.N., Kamenogradskiy N.Ye., Kashin F.V., Semenov V.K., Sinyakov V.P., Sorokina L.I. Spektral'no–vremennaya struktura variatsiy obshchego soderzhaniya ozona v atmosfere tsentral'noy chasti Evrazii [Spectral–temporal structure of variations in the total ozone content in the atmosphere of the central part of Eurasia] // Izv. RAN. Physics of atmosphere and ocean. 2006. V. 42. No. 2. P. 205–22. (In Russian).
  4. Visheratin K.N., Nerushev A.F., Orozaliev M.D., Zheng X., Sun Sh., Liu L. Vremennaya izmenchivost' obshchego soderzhaniya ozona v Aziatskom regione po dannym nazemnykh i sputnikovykh izmereniy [Temporal variability of the total ozone content in the Asian region according to ground and satellite measurements] // Issledovaniye Zemli iz kosmosa. 2017. No. 1.P. 59–68. (In Russian).
  5. Visheratin K.N., Baranova Ye.L., Bugrim G.I., Ivanov V.N., Krasnopeyeva Ye.I., Sakhibgareyev D.G., Ustinov V.P., Shilkin A.V. Variatsii prizemnykh kontsentratsiy i obshchego soderzhaniya SO2 i SN4 nad stantsiyey Obninsk v 1998–2021 [Variations in surface concentrations and total content of CO2 and CH4 over Obninsk station in 1998–2021] // Izv. RAN. Physics of atmosphere and ocean. 2023. V. 59. No. 2. P. 200–216. (In Russian).
  6. Doklad ob osobennostyakh klimata na territorii Rossiyskoy Federatsii za 2021 god. Moskva. 2022. 104 p. [Report on climate features in the Russian Federation for 2021. Moscow. 2022. 104 p. (In Russian).
  7. Kashkin V.B., Rubleva R.G., Khlebopros R.G. Stratosfernyy ozon: vid s kosmicheskoy orbity [Stratospheric ozone: view from space orbit]. Krasnoyarsk: Sibirsk. federal univ., 2015. 184 p. ISBN978-5-7638-3348-5. (In Russian).
  8. Perov S.P., Hrgian A.H. Sovremennyye problemy atmosfernogo ozona [Modern problems of atmospheric ozone]. Leningrad, Gidrometeoizdat, 1980. 288 p. (In Russian).
  9. Timofeyev Yu.M. Issledovaniye atmosfery Zemli metodom prozrachnosti [Study of the Earth's atmosphere using the transparency method]. SPb.: Nauka, 2016. 367 p. (In Russian).
  10. Barbe A., Mikhailenko S., Starikova E., Tyuterev V. High Resolution Infrared Spectroscopy in Support of Ozone Atmospheric Monitoring and Validation of the Potential Energy Function // Molecules. 2022. V. 27. P. 911. https://doi.org/10.3390/molecules27030911
  11. Bodeker G.E., Nitzbon J., Tradowsky J.S., Kremser S., Schwertheim A., Lewis J. A global total column ozone climate data record // Earth Syst. Sci. Data. 2021. V. 13. P. 3885–3906. https://doi.org/10.5194/essd-13-3885-2021
  12. Bojilova R., Mukhtarov P., Miloshev N. Latitude Dependence of the Total Ozone Trends for the Period 2005–2020: TOC for Bulgaria in the Period 1996–2020 // Atmosphere. 2022. V. 13. P. 918. https://doi.org/10.3390/atmos13060918
  13. Coldewey-Egbers M., Loyola D.G., Lerot C., Van Roozendael M. Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record // Atmos. Chem. Phys. 2022. V.22. P. 6861–6878 https://doi.org/10.5194/acp-22-6861-2022
  14. Cracknell A. P., Varotsos C. A. Remote sensing and atmospheric ozone // Springer-Verlag Berlin. 2012. 662 p. doi: 10.1007/978-3-642-10334-6.
  15. García O.E., Schneider M., Sepúlveda E., Hase F., Blumenstock T., Cuevas E., Ramos R., Gross J., Barthlott S., Röhling A.N., Sanromá E., González Y., Gómez-Peláez A.J., Navarro-Comas M., Puentedura, O., Yela M., Redondas A., Carreño V., León-Luis S.F., Reyes E., García R.D., Rivas P.P., Romero-Campos P. M., Torres C., Prats N., Hernández M., and López C. Twenty years of groundbased NDACC FTIR spectrometry at Izaña Observatory – overview and long-term comparison to other techniques // Atmos. Chem. Phys. 2021. V. 21. P. 15519–15554. https://doi.org/10.5194/acp-21-15519-2021
  16. García O.E., Schneider M., Hase F., Blumenstock T., Sepúlveda E., González Y. Quality assessment of ozone total column amounts as monitored by ground-based solar absorption spectrometry in the near infrared (>3000 cm−1) // Atmos. Meas.Tech. 2014. V. 7. P. 3071–3084. https://doi.org/10.5194/amt-7-3071–2014
  17. García O.E., Sanromá E., Schneider M., Hase F., León-Luis S.F., Blumenstock T., Sepúlveda E., Redondas A., Carreño V., Torres C., Prats N. Improved ozone monitoring by ground-based FTIR spectrometry // Atmos. Meas. Tech. 2022. V. 15. P. 2557–2577. https://doi.org/10.5194/amt-15-2557-2022
  18. Gordon I.E., Rothman L. S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y. et al. The HITRAN2020 molecular spectroscopic database. // J. Quant. Spectrosc. Radiat. Transf. 2022. V. 277. P. 107949. https://doi.org/10.1016/j.jqsrt.2021.107949
  19. Gröbner J., Schill H., Egli L., Stübi R. Consistency of total column ozone measurements between the Brewer and Dobson spectroradiometers of the LKO Arosa and PMOD/WRC Davos // Atmos. Meas. Tech. 2021. V. 14. P. 3319–3331. https://doi.org/10.5194/amt-14-3319-2021, 2021
  20. Infraspek. 2021. http://www.infraspek.ru/produktsiya/spektrometryi/fsm-2203-2/
  21. IRWG, 2014. Infrared Working Group Uniform Retrieval Parameter Summary, Tech. rep., http://www.acom.ucar.edu/irwg/IRWG_Uniform_RP_Summary-3.pdf
  22. Janssen C., Boursier C., Jeseck P., Té Y. Line parameter study of ozone at 5 and 10µm using atmospheric FTIR spectra from the ground: A spectroscopic database and wavelength region comparison // Journal of Molecular Spectroscopy. 2016. V. 326. P. 48–59. doi: 10.1016/j.jms.2016.04.003.
  23. Kagawa A., Kasai Y., Jones N.B, Yamamori M., Seki K., Murcray F., Murayama Y., Mizutani K., Itabe T. Characteristics and error estimation of stratospheric ozone and ozone-related species over Poker Flat (651N, 1471W), Alaska observed by a ground-based FTIR spectrometer from 2001 to 2003 // Atmos Chem Phys. 2007. V. 7. P. 3791–3810. www.atmos-chem-phys.net/7/3791/2007
  24. Levelt P.F., Joiner J., Tamminen J., Veefkind J.P., Bhartia P.K., Stein Zweers D.C., Duncan B.N., Streets D.G., Eskes H., van der A R., McLinden C., Fioletov V. et al. The Ozone Monitoring Instrument: overview of 14 years in space // Atmos. Chem. Phys. 2018. V. 18. P. 5699–5745. https://doi.org/10.5194/acp-18-5699-2018
  25. Lindenmaier R., Batchelor R.L., Strong K., Fast H., Goutail F., Kolonjari F., Thomas McElroy C., Mittermeier R.L. Walker K. A. An evaluation of infrared microwindows for ozone retrievals using the Eureka Bruker 125HR Fourier transform spectrometer // J. Quant. Spectrosc. Rad. 2010. V. 111. P. 569–585. https://doi.org/10.1016/j.jqsrt.2009.10.013
  26. McPeters R., Kroon M., Labow G., Brinksma E., Balis D., Petropavlovskikh I., Veefkind J.P., Bhartia P.K., Levelt P.F. Validation of the Aura Ozone Monitoring Instrument total column ozone product // J. Geophys. Res. 2008. V. 113. D15S14. doi: 10.1029/2007JD008802.
  27. McPeters R., Frith S., Kramarova N., Ziemke J., Labow G. Trend quality ozone from NPP OMPS: the version 2 processing // Atmos. Meas. Tech. 2019. V. 12. P. 977–985. https://doi.org/10.5194/amt-12-977-2019
  28. Nerobelov G., Timofeyev Y., Virolainen Y., Polyakov A., Solomatnikova A., Poberovskii A., Kirner O., Al-Subari O., Smyshlyaev S., Rozanov E. Measurements and Modelling of Total Ozone Columns near St. Petersburg, Russia // Remote Sens. 2022. V. 14. P. 3944. https://doi.org/10.3390/rs14163944
  29. Orfanoz-Cheuquelaf A., Rozanov A., Weber M., Arosio C., Ladstätter-Weißenmayer A., Burrows J.P. Total ozone column from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) measurements using the broadband weighting function fitting approach (WFFA) // Atmos. Meas. Tech. 2021. V. 14. P. 5771–5789. https://doi.org/10.5194/amt-14-5771-2021
  30. Plaza-Medina E.F., Stremme W., Bezanilla A., Grutter M., Schneider M., Hase F., Blumenstock T. Ground-based remote sensing of O3 by high- and medium-resolution FTIR spectrometers over the Mexico City basin // Atmos. Meas. Tech. 2017. V. 10. P. 2703–2725. https://doi.org/10.5194/amt-10-2703-2017
  31. Rinsland C.P, Connor B.J, Jones N.B, Boyd I., Matthews W.A., Goldman A., Murcray F.J., Murcray D.G., David S.J., Pougatchev N.S. Comparison of infrared and Dobson total ozone columns measured from Lauder, New Zealand // Geophys. Res. Lett. 1996. V. 23. P. 1025–1028.
  32. Rodgers C.D. Characterization and error analysis of profiles retrieved from remote sounding measurements // J. Geophys. Res. 1990. V. 95. V. 5587–5595.
  33. Rodgers C.D. Inverse methods for atmospheric sounding: theory and practice. Series on atmospheric, oceanic and planetary physics. Vol. 2. // New Jersey: World Scientific Publishing Ltd. 2000. 238 p.
  34. Senten C., De Mazière M., Vanhaelewyn G., Vigouroux C. Information operator approach applied to the retrieval of the vertical distribution of atmospheric constituents from ground-based high-resolution FTIR measurements // Atmos. Meas. Tech. 2012. V. 5. P. 161–180. https://doi.org/10.5194/amt-5-161-2012
  35. SFIT. The University Corporation for Atmospheric Research, https://wiki.ucar.edu/display/sfit4.
  36. Takele Kenea S., Mengistu Tsidu G., Blumenstock T., Hase F., von Clarmann T., Stiller G.P. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia // Atmos.Meas. Tech. 2013. V. 6. P. 495–509. https://doi.org/10.5194/amt-6-495-2013
  37. Timofeyev Y., Virolainen Y., Makarova M., Poberovsky A., Polyakov A., Ionov D., Osipov S., Imhasin H. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia) // J. Molecular Spectroscopy. 2016. V. 323. P. 2–14. doi: 10.1016/j.jms.2015.12.007.
  38. Viatte C., Gaubert B., Eremenko M., Hase F., Schneider M., Blumenstock T., Ray M., Chelin P., Flaud J.-M., Orphal J. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy // Atmos. Meas. Tech. 2011. V. 4. P. 2323–2331. doi: 10.5194/amt-4-2323-2011.
  39. Virolainen Y.A., Poberovsky A.V. Intercomparison of satellite and ground-based ozone total column measurements // Izvestiya, Atmospheric and Oceanic Physics. 2013. V. 49(9). P. 993–1001. doi: 10.1134/S0001433813090235.
  40. Visheratin K.N. Analytical method for suppressing Gibbs lobes in spectral analysis // XXVII International Symposium "Atmospheric and Ocean Optics. Atmospheric Physics" July 05–09, 2021, Moscow. doi: 10.13140/RG.2.2.15826.48327.
  41. WACCAM. Whole Atmosphere Community Climate Model, https://www2.acom.ucar.edu/gcm/waccm; ftp://acd.ucar.edu/user/jamesw/IRWG/2013/
  42. WMO, 2022. World Meteorological Organization Executive Summary. Scientific Assessment of Ozone Depletion: 2022, GAW Report No. 278, 56 p. https://ozone.unep.org/science/assessment/sap/
  43. Wunch D., Taylor J.R., Fu D., Bernath P., Drummond J.R., Midwinter C., Strong K., Walker K.A. Simultaneous ground-based observations of O3, HCl, N2O, and CH4 over Toronto, Canada by three Fourier transform spectrometers with different resolutions // Atmos. Chem. Phys. 2007. V. 7. P. 1275–1292. doi: 10.5194/acp-7-1275-2007.
  44. Yamanouchi S., Strong K., Colebatch O., Conway C., Jones D.B.A., Lutsch E. Roche S. Atmospheric trace gas trends obtained from FTIR column measurements in Toronto, Canada from 2002–2019 // Environ. Res. Commun.2021. V. 3. N. 5. doi: 10.1088/2515-7620/abfa65.
  45. Zhou M., Wang P., Langerock B., Vigouroux C., Hermans C., Kumps N., Wang T., Yang Y., Ji D., Ran L., Zhang J., Xuan Y., Chen H., Posny F., Duflot V., Metzger J.-M., De Mazière M.Ground-based Fourier transform infrared (FTIR) O3 retrievals from the 3040 cm–1 spectral range at Xianghe, China // Atmos. Meas. Tech. 2020. V. 13. P. 5379–5394. https://doi.org/10.5194/amt-13-5379-2020, 2020

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies