Relation of Changes in CO2 Concentration over Large Water Areas of the Boreal and Subarctic Zones of the Northern Hemisphere with Their Phenological Phases Determined from SMOS Satellite Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of comparing the atmospheric carbon dioxide reanalysis data and phenological phases of large freshwater areas located in the boreal and subarctic zone for 2012–2020. The data from the CAMS global greenhouse gas reanalysis, which are three-dimensional fields of aerosols and chemical constituents in the atmosphere, with full coverage of the globe, were used in this work. The data used in this study were the average CO2 content in the air column over the water areas. The phenological phases of freshwater bodies (water surface, ice cover, ice destruction) were determined using data from the MIRAS microwave radiometer of the SMOS satellite. The comparison and analysis showed that the CO2 concentration in the atmosphere over the studied water areas has a seasonal cyclic character. The minimum concentration corresponds to the summer period due to strong photosynthesis in water areas, as a result of which carbon dioxide is absorbed in the water column. The maximum concentration of CO2 over water areas corresponds to the period of destruction of the ice cover, leading to the release of carbon dioxide accumulated during the winter period, which is “sealed” in the ice and in the water column under the ice. In freezing lakes located in the boreal zone, in addition to the stable spring CO2 maximum, a strong short-term release of carbon dioxide is sometimes observed, also corresponding to the stage of ice cover destruction. This emission is explained by the higher bioproductivity of water bodies in the boreal zone compared to water areas in the subarctic zone.

Full Text

Restricted Access

About the authors

V. V. Tikhonov

Space Research Institute RAS; Institute for Water and Environmental Problems SB RAS

Author for correspondence.
Email: vtikhonov@asp.iki.rssi.ru
Russian Federation, Moscow; Barnaul

E. V. Pashinov

Space Research Institute RAS

Email: vtikhonov@asp.iki.rssi.ru
Russian Federation, Moscow

D. M. Ermakov

Space Research Institute RAS; Kotelnikov Institute of Radio Engineering and Electronics RAS

Email: vtikhonov@asp.iki.rssi.ru
Russian Federation, Moscow; Fryazino

I. V. Khvostov

Institute for Water and Environmental Problems SB RAS

Email: vtikhonov@asp.iki.rssi.ru
Russian Federation, Barnaul

A. N. Romanov

Institute for Water and Environmental Problems SB RAS

Email: vtikhonov@asp.iki.rssi.ru
Russian Federation, Barnaul

References

  1. Voynov G. N., Nalimov Yu.V., Piskun A. A., Stanovoy V. V., Usankina G. E. Osnovnye cherty gidrologicheskogo rezhima Obskoi i Tazovskoi gub (led, urovni, struktura vod) [The main features of the hydrological regime of the Ob and Taz bays (ice, levels, water structure)]. Saint Petersburg: Nestor-History, 2017. 192 p. (In Russian).
  2. Karetnikov S. G. Proyavlenie klimaticheskikh izmenenii v ledovom rezhime Ladozhskogo ozera za poslednie 55 let [Manifestation of climatic change in the ice phenology of Lake Ladoga over the past 55 years] // Ice and Snow, 2021. V. 61. No. 2. P. 241–247. https://doi.org/10.31857/S2076673421020085. (In Russian).
  3. Romanov A. N., Khvostov I. V., Tikhonov V. V., Sharkov E. A. Assessing Hydrological Changes in Wetland Areas of the Russian Arctic, Subarctic, and Northern Taiga Based on Microwave Remote Sensing Data // Izvestiya, Atmospheric and Oceanic Physics. 2022. V. 58. No. 9. P. 1100–1110. doi: 10.1134/S0001433822090201.
  4. Rumyantsev V. A., Drabkova V. G., Izmailova A. V. Velikie ozera mira [Great Lakes of the World], Saint Petersburg: Lema, 2012. 370 p. (In Russian).
  5. Tikhonov V. V., Khvostov I. V., Romanov A. N., Sharkov E. A.Analysis of Changes in the Ice Cover of Freshwater Lakes by SMOS data // Izvestiya, Atmospheric and Oceanic Physics. 2018. V. 54. No. 9. P. 1135–1140. https://doi.org/10.1134/S0001433818090384.
  6. Tikhonov V. V., Romanov A. N., Khvostov I. N., Alekseeva T. A., Sinitskiy A. I., Tikhonova M. V., Sharkov E. A., Komarova N. Yu. Mezhgodovye variatsii sobstvennogo mikrovolnovogo izlucheniya Obskoi guby v period ledostava i ikh svyaz’ s gidrologicheskimi i klimaticheskimi izmeneniyami regiona [Interannual variation of microwave radiation of the Gulf of Ob during the freezing season and relationship to hydrological and climate changes in the region] // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2021. V. 18. No. 6. P. 185–199. doi: 10.21046/2070-7401-2021-18-6-185-199. (In Russian).
  7. Denfeld B. A., Wallin M. B., Sahlée E., Sobek S., Kokic J., Chmiel H. E., Weyhenmeyer G. A. Temporal and spatial carbon dioxide concentration patterns in a small boreal lake in relation to ice-cover dynamics // Boreal Environment Research. 2015. V. 20. No. 6. P. 679–692.
  8. Denfeld B. A., Kortelainen P., Rantakari M., Sobek S., Weyhenmeyer G. A. Regional Variability and Drivers of Below Ice CO2 in Boreal and Subarctic Lakes // Ecosystems. 2016. V. 19. P. 461–476. https://doi.org/10.1007/s10021–015–9944-z.
  9. Engel F., Farrell K. J., McCullough I. M., Scordo F., Denfeld B. A., Dugan H. A., de Eyto E., et al. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters // The Science of Nature. 2018. V. 105. Art. No. 25. 9 p. doi: 10.1007/s00114-018-1547-z.
  10. Gutierrez A., Castro R., Vieira P., Lopes G., Barbosa J. SMOS L1 Processor L1c Data Processing Model, Lisboa: DEIMOS Engenharia, 2017. 83 p.
  11. Inness A., Ades M., Agustí-Panareda A., Barré J., Benedictow A., Blechschmidt A.-M., Dominguez J. J., et al. The CAMS reanalysis of atmospheric composition // Atmospheric Chemistry and Physics. 2019. V. 19. No. 6. P. 3515–3556.
  12. https://doi.org/10.5194/acp-19-3515-2019.
  13. Karlsson J., Giesler R., Persson J., Lundin E. High emission of carbon dioxide and methane during ice thaw in high latitude lakes // Geophysical Research Letters. 2013. V. 40. No. 6. P. 1123–1127. doi: 10.1002/grl.50152.
  14. Kerr Y. H., Waldteufel P., Wigneron J.-P., Delwart S., Cabot F., Boutin J., Escorihuela M.-J., et al. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle // Proceeding of the IEEE. 2010. V. 98. No. 5. P. 666–687. doi: 10.1109/JPROC.2010.2043032.
  15. Rantala M. V., Nevalainen L., Rautio M., Galkin A., Luoto T. P.Sources and controls of organic carbon in lakes across the subarctic treeline // Biogeochemistry. 2016. No. 129. P. 235–253. doi: 10.1007/s10533-016-0229-1.
  16. Sahr K., White D., Kimerling A. J. Geodesic Discrete Global Grid System // Cartography and Geographic Information Science. 2003. V. 30. No. 2. P. 121–134.
  17. Tikhonov V., Khvostov I., Romanov A., Sharkov E. Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data // The Cryosphere. 2018. V. 12. No. 8. P. 2727–2740. https://doi.org/10.5194/tc-12-2727-2018.
  18. Tikhonov V. V., Romanov A. N., Khvostov I. V., Alekseeva T. A., Sinitskiy A. I., Tikhonova M. V., Sharkov E. A., Komarova N.Yu. Analysis of the hydrological regime of the Gulf of Ob in the freezing period using SMOS data // Russian Arctic. 2022. No. 2(17). P. 44–71. doi: 10.24412/2658-4255-2022-2-44-71.
  19. Tranvik L. J., Downing J. A., Loiselle S. A., Striegl R. G., Ballatore Th.J., Dillon P., Finlay K., et al. Lakes and reservoirs as regulators of carbon cycling and climate // Limnology and Oceanography. 2009. V. 54. No. 6. Pt. 2. P. 2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298.
  20. Wen Z., Shang Y., Lyu L., Li S., Tao H., Song K. A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology // Remote Sensing. 2021. V. 23. No. 13. Art. No. 4916. 15 p. https://doi.org/10.3390/rs13234916.
  21. Weyhenmeyer G. A., Karlsson J. Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures // Limnology and Oceanography. 2009. V. 54. No. 6. Pt. 2. P. 2513–2519. doi: 10.4319/lo.2009.54.6_part_2.2513.
  22. Weyhenmeyer G. A., Kosten S., Wallin M. B., Tranvik L. J., Jeppesen E., Roland F. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs // Nature Geoscience. 2015. V. 8. Iss. 12. P. 933–938.
  23. https://doi.org/10.1038/ngeo2582.
  24. Zimov S. A., Schuur E. A.G., Chapin F. S. Permafrost and the global carbon budget // Science. 2006. V. 312. P. 1612–1613. doi: 10.1126/SCIENCE.1128908.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The cycle of organic carbon in the lakes of the Subarctic and boreal zones (https://www.arcticcirc.net/researchinterests/ gudasz-lake-carbon-cycles). Terrestrial – terrestrial; Algae pelagic – pelagic algae (plants or animals living in the thickness or on the surface of water); Algae benthic – benthic algae (a set of organisms living on the ground and in the soil of the bottom of reservoirs); Microbial decomposition – microbial decomposition; Sedimentation – deposition; Burial – burial.

Download (238KB)
3. Fig. 2. The studied water areas: a – lake. Baikal; b – Ladoga Lake; c – Ob Bay; g – lake. Huron; d – Big Non- free Lake; e – Big Bear Lake. The green color indicates the area corresponding to the L1C SMOS cell.

Download (1MB)
4. Fig. 3. Seasonal variations in brightness temperature and their corresponding phenological phases for a large The Slave Lake. (northwest Canada).

Download (247KB)
5. Fig. 4. Seasonal dynamics of brightness temperature and CO2 concentration for the studied water areas: a – lake. Bai- kal; b – Ladoga Lake; c – Ob Bay; g – lake. Huron; d – Big Slave Lake; e – Big Bear Lake.

Download (1MB)
6. Fig. 5. Seasonal dynamics of brightness temperature and CO2 concentration over a three–year period: a - for the lake. Baikal (boreal zone); b – for lake. Bolshoe Medvezhye (subarctic zone).

Download (756KB)
7. Fig. 6. Seasonal dynamics of brightness temperature and CO2 concentration for two test sites with different terrain: a - forest; b – swamp.

Download (687KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies