Study of Thermokarst Lake Size Distribution in the Eastern Part of the Russian Arctic Based on Combining Sentinel-2 and Kanopus-V Images

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is devoted to the issues of remote studies of the size distribution of thermokarst lakes in the territory of the eastern part of the Russian Arctic. The studies were carried out in the Arctic territories of the Northeastern (Yakutia) and Chukotka tundras, which represent relatively homogeneous areas in terms of their natural properties, referred to here as ecoregions. Remote studies of the distribution of thermokarst lakes by area were conducted using satellite images from the Kanopus-B and Sentinel-2 (with spatial resolution of 2.1 and 20 m, respectively), obtained in the summer months of 2017–2021. The lakes were interpreted using Sentinel-2 satellite image mosaic, which provides full coverage of the study territories, Kanopus-B images at 12 test sites, and QGIS 3.22 tools. We briefly described the method of integration (combination) of data from Kanopus-B and Sentinel-2 images for plotting synthesized histograms of lakes distribution by their sizes. The technique allowed us to get histograms of lake distribution in a very wide range of their sizes from 50 to 108 m2 in the studied Arctic ecoregions. The histogram plots show a similar behavior in both ecoregions, manifesting itself in an increase in the number of lakes as their size decreases. It is shown that the main contribution to the number of lakes in the Northeastern tundra is made by much larger lakes than in the Chukchi tundra, which may indicate a significant difference in the geocryological conditions in different Arctic territories of the eastern part of the Russian Arctic. The degree of the lakeing of the territories was assessed. It was shown that the lakeing of the Northeastern tundra is 7 times higher than in the studied territories of Chukotka.

About the authors

I. N. Muratov

Ugra Research Institute of Information Technologies

Email: yupolishchuk@gmail.com
Russia, Khanty-Mansiysk

O. A. Baysalyamova

Ugra Research Institute of Information Technologies

Email: yupolishchuk@gmail.com
Russia, Khanty-Mansiysk

Y. M. Polishchuk

Ugra Research Institute of Information Technologies

Author for correspondence.
Email: yupolishchuk@gmail.com
Russia, Khanty-Mansiysk

References

  1. Викторов А.С., Капралова В.Н., Орлов Т.В., Трапезникова О.Н., Архипова М.В., Березин П.В., Зверев А.В., Панченко Е.Н., Садков С.А. Закономерности распределения размеров термокарстовых озер // Докл. АН. 2017. Т. 474. № 5. С. 625–627.
  2. Котляков В.М., Хаин В.Е., Гуцуляк В.Н., Данилов А.И. АРКТИКА // Большая российская энциклопедия. Электронная версия (2020). URL: https://bigenc.ru/geography/text/3452274 Дата обращения: 15.06.2022.
  3. Полищук Ю.М., Богданов А.Н., Брыксина Н.А., Муратов И.Н., Полищук В.Ю. Интеграция космических снимков сверхвысокого и среднего разрешения для построения гистограмм распределения площадей термокарстовых озер в расширенном диапазоне их размеров // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 16. № 3. С. 9–17.
  4. Полищук Ю.М., Полищук В.Ю., Брыксина Н.А., Покровский О.С., Кирпотин С.Н., Широкова Л.С. Методические вопросы оценки запасов метана в малых термокарстовых озерах криолитозоны Западной Сибири // Изв. Томского политехнического университета. 2015. Т. 326. № 2. С. 12–135.
  5. Grosse G., Romanovsky V., Walter K., Morgenstern A., Lantuit H., Zimov S. Distribution of thermokarst lakes and ponds at three yedoma sites in Siberia // Proc. of the 9th Intern. Conf. on Permafrost (June 29–July 3, 2008). Fairbanks, Alaska. 2008. P. 551‒556.
  6. Holgerson M.A., Raymond P.A. Large contribution to inland water CO2 and CH4 emissions from very small ponds // Nature Geoscience Letters. 2016. V. 9. P. 222–226.
  7. Karlsson J.M., Lyon S.W., Destouni G. Temporal behavior of lake size-distribution in a thawing permafrost landscape in Northwestern Siberia // Remote sensing. 2014. № 6. P. 621–636.
  8. Kirpotin S., Polishchuk Y., Bryksina N. Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting // International Journal of Environmental Studies. 2009. V. 66. № 4. P. 423–431.
  9. Olson D.M., Dinerstein E., Wikramanayake E.D., Burgess N.D., Powell G.V., Underwood E.C., D’amico J.A., Itoua I., Strand H.E., Morrison J.C., Loucks C.J., Allnutt T.F., Ricketts T.H., Kura Y., Lamoreux J.F., Wettengel W.W., Hedao P., Kassem K.R. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity // BioScience. 2001. V. 51. Iss. 11. P. 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA] 2.0.CO;2
  10. Pokrovsky O.S., Shirokova L.S., Kirpotin S.N., Audry S., Viers J., Dupre B. Effect of permafrost thawing on the organic carbon and metal speciation in thermokarst lakes of Western Siberia // Biogeosciences. 2011. V. 8. P. 565–583.
  11. Polishchuk Y.M., Bogdanov A.N., Muratov I.N., Polishchuk V.Y., Lim A., Manasypov R.M., Shirokova L.S., Pokrovsky O.S. Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost – affected part of the Western Siberian lowland // Environmental Research Letters. 2018. V. 13. 045002. P. 1–16. https://doi.org/10.1088/1748-9326/aab046
  12. Serikova S., Pokrovsky O.S., Laudon H., Krickov I.V., Lim A.G., Manasypov R.M., Karlsson J. High carbon emissions from thermokarst lakes of Western Siberia // Nature Communications. 2019. 10(1): 1552. https://doi.org/10.1038/s41467-019-09592-1
  13. Walter K.M., Smith L.C., Chapin F.S. Methane bubbling from northern lakes: present and future contributions to the global methane budget // Phil. Trans. R. Soc. 2007. V. 365. P. 1657–1676.
  14. Zabelina S., Shirokova L., Klimov S., Chupakov A., Lim A., Polishchuk Y., Polishchuk V., Bogdanov A., Muratov I., Guerin F., Karlsson J., Pokrovsky O. Carbon Emission from Thermokarst Lakes in NE European Tundra // Limnology and Oceanography. 2020. 9999. P. 1–15. https://doi.org/10.1002/Ino.11560
  15. Zimov S.A., Voropaev Y.V., Semiletov I.P., Davidov S.P., Prosiannikov S.F., Chapin III F.S., Chapin M.C., Trumbore S., Tyler S. North Siberian lakes: a methane source fuelled by Pleistocene Carbon // Science. 1997. V. 277. P. 800–802.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (447KB)
3.

Download (1MB)
4.

Download (92KB)

Copyright (c) 2023 И.Н. Муратов, О.А. Байсалямова, Ю.М. Полищук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies