Mineralization of the Evevpenta Epithermal Silver-gold ore Occurrence (Kamchatka, Russia)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Evevpenta epithermal low-sulfidation ore occurrence is located in the northeastern part of the Central Kamchatka volcanic belt (Kamchatka Peninsula, Russia). It is hosted by andesitic lavas and pyroclastic rocks of the Middle Miocene-Early Pliocene. The ore bodies are comprised of quartz and adularia-quartz veins and stockworks, as well as hydrothermal breccias. Ore bodies are accompanied by argillic wall-rock alteration and peripheral propylitic alteration. Gold-silver mineralization was formed as a result of hypogenic (hydrothermal) and supergen stages of ore-forming processes. Two hypogenic mineral assemblages were documented: gold-telluride-quartz in the Central flank and telluride-sulfide-quartz in the Northern flank. Supergenic mineral assemblage with native (mustard) gold is detected only within the Central flank. The Evevpenta ore occurrence is a typical member of the reducing-alkaline (low-sulfidation) epithermal deposits of Kamchatka, which is based on the study of the material composition of ores.

Texto integral

Acesso é fechado

Sobre autores

P. Zhegunov

Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: pavel.zhegunov@bk.ru
Rússia, bul'var Piipa, 9, Petropavlovsk-Kamchatsky, 683006

A. Kutyrev

Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences

Email: pavel.zhegunov@bk.ru
Rússia, bul'var Piipa, 9, Petropavlovsk-Kamchatsky, 683006

E. Zhitova

Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences

Email: pavel.zhegunov@bk.ru
Rússia, bul'var Piipa, 9, Petropavlovsk-Kamchatsky, 683006

S. Moskaleva

Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences

Email: pavel.zhegunov@bk.ru
Rússia, bul'var Piipa, 9, Petropavlovsk-Kamchatsky, 683006

P. Schweigert

Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences

Email: pavel.zhegunov@bk.ru
Rússia, bul'var Piipa, 9, Petropavlovsk-Kamchatsky, 683006

Bibliografia

  1. Большаков Н.М., Фролов А.И., Минеев С.Д. и др. Геологическое строение золоторудного месторождения Бараньевское (Центральная Камчатка) // Отечественная геология. 2010. № 4. С. 15–22.
  2. Боровиков А.А., Лапухов А.С., Борисенко А.С., Сереткин Ю.В. Физико-химические условия формирования эпитермального Асачинского Au-Ag месторождения (Южная Камчатка) // Геология и геофизика. 2009. Т. 50. № 8. С. 897–909.
  3. Буханова Д.С., Жегунов П.С., Кутырев А.В. Новые данные о минералогических особенностях руд Асачинского Au-Ag месторождения, Камчатский край // Десятая Российская молодежная научно-практическая школа с международным участием: “Новое в познании процессов рудообразования” / Сборник материалов. М.: ИГЕМ РАН, 2021. С. 69–72.
  4. Карта полезных ископаемых Камчатской области масштаба 1:500 000. Краткая объяснительная записка. Каталог месторождений, проявлений, пунктов минерализации и ореолов рассеяния полезных ископаемых. СПб.: ВСЕГЕИ, 1999. 563 с.
  5. Кигай И.Н. Условия формирования метасоматитов и оруденения эпитермальных золото-серебряных месторождений // Геология рудных месторождений. 2020. Т. 62. № 5. С. 475-480.
  6. Константинов М.М., Варгунина Н.П., Косовец Т.Н. и др. Золото-серебряные месторождения. Сер. Модели месторождений благородных и цветных металлов. М.: ЦНИГРИ, 2000. 239 с.
  7. Округин В.М., Андреева Е.Д., Яблокова Д.А. и др. Новые данные о рудах Агинского золото-теллуридного месторождения (Центральная Камчатка) // Материалы ежегодной научной конференции, посвященной Дню вулканолога: “Вулканизм и связанные с ним процессы”. Петропавловск-Камчатский: ИВиС ДВО РАН, 2014а. С. 27–28.
  8. Округин В.М., Ким А.У., Москалева С.В. и др. О рудах Асачинского золото-серебряного месторождения (Южная Камчатка) // Материалы ежегодной научной конференции, посвященной Дню вулканолога: “Вулканизм и связанные с ним процессы”. Петропавловск-Камчатский: ИВиС ДВО РАН, 2014б. С. 329–333.
  9. Пальянова Г.А., Кох К.А., Серёткин Ю.В. Образование сульфидов золота и серебра в системе Au-Ag-S // Геология и геофизика. 2011. Т. 52. № 4. С. 568–576.
  10. Петренко И.Д. Золото-серебряная формация Камчатки. СПб.: Картографическая фабрика ВСЕГЕИ, 1999. 166 с.
  11. Сляднев Б.И., Боровцов А.К., Сидоренко В.И. и др. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (третье поколение). Сер. Корякско-Курильская. Лист O-58 – Усть-Камчатск. СПб.: Картографическая фабрика ВСЕГЕИ, 2013. 256 с.
  12. Цуканов Н.В. Тектоно-стратиграфические террейны Камчатской активной окраины: строение, состав и геодинамика // Материалы ежегодной научной конференции, посвященной Дню вулканолога: “Вулканизм и связанные с ним процессы. Петропавловск-Камчатский: ИВиС ДВО РАН, 2015. С. 97–103.
  13. Якич Т.Ю., Буханова Д.С., Синкина Е.А. и др. Особенности вещественного состава и условия формирования медной минеральной ассоциации Бараньевского эпитермального месторождения (Центральная Камчатка) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333. № 12. С. 74–87.
  14. Ahmad M., Solomon M., Walshe J.L. Mineralogical and geochemical studies of the Emperor gold telluride deposit, Fiji // Econ. Geol. 1987. V. 82(2). P. 345–370.
  15. Andreeva E.D., Matsueda H., Okrugin V.M. et al. Au–Ag–Te Mineralization of the low‐sulfidation epithermal Aginskoe deposit, Central Kamchatka, Russia // Resource Geology. 2013. V. 63(4). P. 337–349.
  16. Arribas A.Jr. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid // Mineralogical Association of Canada Short Course. 1995. V. 23. P. 419–454.
  17. Heald P., Foley N.K., Hayba D.O. Comparative anatomy of volcanic-hosted epithermal deposits; acid-sulfate and adularia-sericite types // Economic Geology. 1987. V. 82. P. 1–26.
  18. Hedenquist J.W., Arribas A., Gonzalez-Urien E. Exploration for epithermal gold deposits // Reviews in Econ. Geol. 2000. V. 13. P. 245–277.
  19. Hedenquist J.W., Izawa E., Arribas A., White N.C. Epithermal gold deposits: Styles, characteristics, and exploration: Poster and booklet // Resource Geology Special Publication 1. 1996. 17 p. (with translations to Spanish, French, Japanese, and Chinese)
  20. John D.A., Vikre P.G., du Bray E.A. et al. Descriptive models for epithermal gold-silver deposits: U.S // Geological Survey Scientific Investigations Report 2010–5070–Q. 2018. 247 p.
  21. Konstantinovskaia E.A. Arc–continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia) // Tectonophysics. 2001. V. 333(1‒2). P. 75–94.
  22. Okrugin V.M., Andreeva E., Etschmann B. et al. Microporous gold: Comparison of textures from Nature and experiments // Am. Mineral. 2014. V. 99(5). P. 1171–1174.
  23. Paez G.N., Ruiz R., Guido D.M. et al. High-grade ore shoots at the Martha epithermal vein system, Deseado Massif, Argentina: the interplay of tectonic, hydrothermal and supergene processes in ore genesis // Ore Geology Reviews. 2016. V. 72. P. 546–561.
  24. Sander M.V, Einaudi M.T. Epithermal deposition of gold during transition from propylitic to potassic alteration at Round Mountain, Nevada // Econ. Geol. 1990. V. 85(2). P. 285–311.
  25. Sillitoe R.H., Hedenquist J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits // Economic Geology special publication. 2005. V. 10. P. 315–343.
  26. Takahashi R., Matsueda H., Okrugin V.M., Ono S. Epithermal gold‐silver mineralization of the Asachinskoe deposit in South Kamchatka, Russia // Resource Geology. 2007. V. 57(4). P. 354–373.
  27. Takahashi R., Matsueda H., Okrugin V.M. Hydrothermal gold mineralization at the Rodnikovoe deposit in South Kamchatka, Russia // Resource Geology. 2002. V. 52(4). P. 359–369.
  28. Taylor B.E. Epithermal gold deposits // Mineral Deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods / Ed. by W.D. Goodfellow // Mineral Deposits Division, Special Publication: Saint John, NL, Canada, Geological Association of Canada. 2007. V. 5. P. 113–139.
  29. Tolstykh N., Bukhanova D., Shapovalova M. et al. The gold mineralization of the Baranyevskoe Au-Ag epithermal deposit in Central Kamchatka // Minerals. 2021. V. 11(11). P. 1225.
  30. Tolstykh N., Shapovalova M., Shaparenko E., Bukhanova D. The Role of selenium and hydrocarbons in Au-Ag ore formation in the Rodnikovoe low-sulfidation (LS) epithermal deposit, Kamchatka Peninsula, Russia // Minerals. 2022. V. 12(11). P. 1418.
  31. Wang L., Qin K.Z., Song G.X., Li G.M. A review of intermediate sulfidation epithermal deposits and subclassification // Ore Geology Reviews. 2019. V. 107. P. 434–456.
  32. Warmada I.W., Lehmann B., Simandjuntak M. Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold–silver deposit, West Java, Indonesia // The Canadian Mineralogist. 2003. V. 41(1). P. 185–200.
  33. White N.C., Hedenquist J.W. Epithermal gold deposits: styles, characteristics and exploration // SEG Discov. 1995. № 23. P. 1–13.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic geological map of the Evevpent ore occurrence. Compiled according to unpublished data of JSC “North-Eastern PGO” with additions and simplifications. 1 – proluvial quaternary deposits (prQIV); 2 – cover formations of the Tolyatovayam volcanic complex (N1-2tl); 3 – cover formations of the Umuvayam volcanic complex (N1um); 4 – subvolcanic andesites of the Tolyatovayam complex (aN1‒2tl); 5 – dikes of basalts of the Tolyatovayam complex (βN1‒2tl); 6 – subvolcanic dacites of the Umuvayama complex (ζN1UM); 7 – mudstone zones; 8 – quartz veining zones; 9 – quartz veins; 10 – faults extending to the daytime surface; 11 – isohypses. In the inset: the location of the ore occurrence of Evevpent and other epithermal deposits, as well as the volcanic belts of Kamchatka Peninsula, according to [Tsukanov, 2015]. VKVP – East Kamchatka volcanic belt; CCVP – Central Kamchatka volcanic belt; WKVP - West Kamchatka volcanic belt.

Baixar (784KB)
3. Fig. 2. Adulyar-quartz vein in a surface mining, Central section (a) and vein textures: frame-plate, Central section (b), a combination of collomorphic-banded and druze, Northern section (c) and breccia texture with a thin sprinkling of oxidized sulfides, Central section (d). The author photo (2b, 2b) by A.S. Moskovsky.

Baixar (579KB)
4. Fig. 3. Mineral associations and the sequence of mineral formation at the ore occurrence of Evevpent. The thickness of the lines corresponds to the relative abundance of minerals.

Baixar (305KB)
5. Fig. 4. Relationships and typomorphic features of some ore minerals (images in backscattered electrons). a – coalescence of wulfenite (Wul) and ferrimolybdite (Fmub) with illite (Ilt); b – arsenic–containing pyrite (Py) with coarse oscillatory zonality and inclusion of sphalerite (Sp); c ‒ molybdenum (Mol) and an unnamed Mo‒Te-O phase (UN) in illite quartz (Qz) aggregate; g – chalcopyrite (Ccp) edged with spioncopite (?) (Spi); d – loose, flaky acanthite (Aca) in quartz; e – inclusion of arsenopyrite (Apy) in arsenic-containing pyrite.

Baixar (357KB)
6. Fig. 5. Tellurides and selenides of gold and silver in the Central (c, e) and Northern (a, b, d, e) sections, images in backscattered electrons. a, b – inclusions of hessian (Hes) and petzite (Ptz) in pyrite; c – inclusions of naumannite (Nau) in chalcopyrite; d – coalescence of hessian, petzite and pyrite; d – veins of native gold in hessian; e – krennerite (Knn) in association with native gold and hypergenic manganese minerals (Mng) in the adular quartz matrix (Adl).

Baixar (290KB)
7. Fig. 6. Diagrams of the chemical compositions of precious metal minerals of the Evevpent ore occurrence (in at. %). a – compositions of minerals of the Au‒Ag‒Te system (1 – minerals of the Northern section, 2 – minerals of the Central section, 3 – theoretical compositions of minerals corresponding to their ideal formulas); b – compositions of minerals of the Au system‒Ag‒S (1 – compositions of sulfides of the Central site, 2 – theoretical compositions of minerals corresponding to their ideal formulas).

Baixar (154KB)
8. Fig. 7. Morphological features of the native gold of the Central site and its relationship with other minerals (images in backscattered electrons). a – an aggregate of spherulites and poorly faceted crystals of native gold; b – a grain of native gold with a surface of a flowing appearance; c – a grain of native gold with kidney–shaped growths of gold on the surface; d - native gold covered with a “jacket” of iron hydroxides; d – inclusions of native gold in iron hydroxides and plumboyarosite (Pjrs); e – gold particles on the surface of jarosite (Jrs); g – grain of “mustard” gold (MG) in association with iron hydroxides (Gth) in a quartz-adular matrix, h – the same grain in the image in reflected light.

Baixar (407KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies