Model of the Seismic Rupture Surface of the Chignik Earthquake (Alaska, USA) 07.29.2021 Based on SAR Interferometry and GNSS Data

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents a new rupture model for the Mw = 8.2 “Chignik” earthquake, which occurred off the coast of the Alaska Peninsula on 29.07.2021. The model is based on the Earth’s surface displacement fields obtained by InSAR (Interferometric synthetic aperture radar) method using images of the ESA Sentinel-1 satellites from 17.07 to 10.08.2021 and data on horizontal displacements at nearest permanent GPS sites from 18.07 to 08.08.2021. Obtained displacement fields include both coseismic and part of postseismic displacements. When constructing a model of the seismic rupture surface, we used F. Pollitz’s solution of the problem of the displacement fields at the surface of a spherical radially stratified planet caused by displacements on a rectangular discontinuity located inside it. For the regularization of the inverse problem, we added the condition that the direction of slip on each element of the fault plane is close to the rake angle, determined from seismological data. In the constructed model, the seismic rupture area was approximated by a single plane with a length of 225 km along the strike, 126 km along the dip, divided into 48 identical rectangles. According to the constructed model, the type of displacements is almost pure thrust, and displacements, in general, occurred throughout all the source area. The maximum displacement was 5.7 m, with an average displacement over the entire plane of 2.2 m, which is close to the USGS and GCMT estimates derived from seismological data.

作者简介

A. Konvisar

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Faculty of Physics, Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: alexkonvisar@gmail.com
Russia, 123242, Moscow, Bolshaya Gruzinskaya str., 10, bld. 1; Russia, 119991, Moscow, Leninskie Gory, 1, bld. 2

V. Mikhailov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alexkonvisar@gmail.com
Russia, 123242, Moscow, Bolshaya Gruzinskaya str., 10, bld. 1

M. Volkova

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alexkonvisar@gmail.com
Russia, 123242, Moscow, Bolshaya Gruzinskaya str., 10, bld. 1

V. Smirnov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Faculty of Physics, Lomonosov Moscow State University

Email: alexkonvisar@gmail.com
Russia, 123242, Moscow, Bolshaya Gruzinskaya str., 10, bld. 1; Russia, 119991, Moscow, Leninskie Gory, 1, bld. 2

参考

  1. Михайлов В.О., Киселева Е.А., Тимошкина Е.П., Смирнов В.Б., Пономарев А.В., Дмитриев П.Н., Карташов И.М., Хайретдинов С.А., Арора К., Чадда Р., Шринагеш Д. Совместная интерпретация наземных и спутниковых данных для землетрясения Горха, Непал, 25.04.2015 // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15. № 4. С. 119–127. https://doi.org/10.21046/2070-7401-2018-15-4-119-127
  2. Михайлов В.О., Тимошкина Е.П., Смирнов В.Б., Хайретдинов С.А., Дмитриев П.Н. К вопросу о природе постсейсмических деформационных процессов в районе землетрясения Мауле, Чили, 27.02.2010 г. // Физика Земли. 2020. № 6. С. 38–47. https://doi.org/10.31857/S0002333720060046
  3. Михайлов В.О., Тимофеева В.А., Смирнов В.Б., Тимошкина Е.П., Шапиро Н.М. Новая модель поверхности разрыва Ближне-Алеутского землетрясения 17.07.2017 г. Mw = 7.8 на основе данных спутниковой радарной интерферометрии // Физика Земли. 2022. № 2. С. 88–101. https://doi.org/10.31857/S0002333722020089
  4. Ali S.T., Freed A.M. Contemporary deformation and stres-sing rates in Southern Alaska // Geophys. J. Int. 2010. V. 183. P. 557–571. https://doi.org/10.1111/j.1365-246X.2010.04784.x
  5. Argus D.F., Gordon R.G., DeMets C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame // Geochem. Geophys. Geosyst. 2011. V. 12. № 11. P. 1‒13. https://doi.org/10.1029/2011GC003751
  6. Bürgmann R., Rosen P.A., Fielding E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation // Annu. Rev. Earth Planet. Sci. 2000. V. 28. P. 169–209. https://doi.org/10.1146/annurev.earth.28.1.169
  7. Costantini M., Rosen P.A. A generalized phase unwrapping approach for sparse data (IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293)). Hamburg, Germany: IEEE, 1999. P. 267–269. https://doi.org/10.1109/IGARSS.1999.773467
  8. Cross R.S., Freymueller J.T. Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and western Alaska // J. Geophys. Res. 2008. V. 113. № B7. P. 1‒19. https://doi.org/10.1029/2007JB005136
  9. Davies J., Sykes L., House L., Jacob K. Shumagin seismic gap, Alaska Peninsula: History of great earthquakes, tecto-nic setting, and evidence for high seismic potential // J. Geophys. Res. 1981. V. 86. P. 3821‒3855. https://doi.org/10.1029/JB086iB05p03821
  10. Drooff C., Freymueller J.T. New constraints on slip deficit on the Aleutian megathrust and Inflation at Mt. Veniaminof, Alaska from repeat GPS measurements // Geophys. Res. Lett. 2021. V. 48. № 4. P. 1‒12. https://doi.org/10.1029/2020GL091787
  11. Elliott J.L., Grapenthin R., Parameswaran R. M., Xiao Z., Freymueller J. T., Fusso L. Cascading rupture of a mega-thrust // Sci. Adv. 2022. V. 8. № 18. P. 1‒10. https://doi.org/10.1126/sciadv.abm4131
  12. Ferretti A. Satellite InSAR Data: Reservoir Monitoring from Space. Bunnik, Netherlands: EAGE Publications, 2014. 159 p. https://doi.org/10.3997/9789073834712
  13. Freymueller J.T., Woodard H., Cohen S.C., Cross R., Elliott J., Larsen C.F., Hreinsdóttir S., Zweck C. Active deformation processes in Alaska, based on 15 years of GPS measurements (Active Tectonics and Seismic Potential of Alaska. Geophys. Monogr. Ser., V. 179.). Washington, D. C., USA: AGU, 2008. 42 p. https://doi.org/10.1029/179GM02
  14. Goldstein R.M., Werner C.L. Radar interferogram filtering for geophysical applications // Geophys. Res. Lett. 1998. V. 25. P. 4035−4038. https://doi.org/10.1029/1998GL900033
  15. Goldstein R.M., Zebker H.A., Werner C.L. Satellite radar interferometry: Two dimensional phase unwrapping // Radio Sci. 1988. V. 23. P. 713−720. https://doi.org/10.1029/RS023I004P00713
  16. Hanssen R.F. Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001. 308 p. https://doi.org/10.1007/0-306-47633-9
  17. Hooper A., Segall P., Zebker H. Persistent Scatterer InSAR for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos // J. Geophys. Res. 2007. V. 112. № B7. P. 1‒21. https://doi.org/10.1029/2006JB004763
  18. Liu C., Lay T., Xiong X. The 29 July 2021 Mw 8.2 Chignik, Alaska Peninsula earthquake rupture inferred from seismic and geodetic observations: Re-rupture of the western 2/3 of the 1938 rupture zone // Geophys. Res. Lett. 2022. V. 49. № 4. P. 1‒9. https://doi.org/10.1029/2021JB023676
  19. Okada Y. Internal deformation due to shear and tensile faults in a half-space // Bull. Seismol. Soc. Am. 1992. V. 82. P. 1018–1040. https://doi.org/10.1785/BSSA0820021018
  20. Okada Y. Surface deformation due to shear and tensile faults in a half-space // Bull. Seismol. Soc. Am. 1985. V. 75. P. 1135–1154. https://doi.org/10.1785/BSSA0750041135
  21. Pollitz F.F. Coseismic deformation from earthquake faulting on a layered spherical Earth // Geophys. J. Int. 1996. V. 125. № 1. P. 1–14. https://doi.org/10.1111/j.1365-246X.1996.tb06530.x
  22. Suito H., Freymueller J.T. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake // J. Geophys. Res. 2009. V. 114. № B11. P. 1‒23. https://doi.org/10.1029/2008JB005954
  23. Ye L., Bai Y., Si D., Lay T., Cheung K.F., Kanamori H. Rupture model for the 29 July 2021 Mw 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations // J. Geophys. Res. 2022. V. 127. № 7. P. 1‒42. https://doi.org/10.1029/2021JB023676
  24. Ye L., Lay T., Kanamori H., Yamazaki Y., Cheung K.F. The 22 July 2020 Mw 7.8 Shumagin seismic gap earthquake: partial rupture of a weakly coupled megathrust // Earth Planet. Sci. Lett. 2021. V. 562. № 6A. P. 1‒12. https://doi.org/10.1016/J.EPSL.2021.116879

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (1MB)
4.

下载 (813KB)
5.

下载 (827KB)
6.

下载 (1MB)

版权所有 © А.М. Конвисар, В.О. Михайлов, М.С. Волкова, В.Б. Смирнов, 2023

##common.cookie##