LSTM-Based Robust Voicing Decision Applied to DNN-Based Speech Synthesis


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The quality of statistical parametric speech synthesis (SPSS) relies on voiced/unvoiced classification. Errors in voicing decision can contribute to significant degradation in speech quality. This paper proposes a robust voicing detection method based on power spectrum and long short term memory (LSTM) network for SPSS. The performance of the proposed method is evaluated using CMU Arctic, Keele and MIR-1K databases. Further, the effectiveness of the proposed method is analyzed for deep neural network (DNN)-based SPSS. The results show that the proposed method can better classify the voiced and unvoiced speech segments, which significantly improves the speech quality.

Авторлар туралы

R. Pradeep

Advanced Technology Development Center

Хат алмасуға жауапты Автор.
Email: rpradeep@iitkgp.ac.in
Үндістан, IIT Kharagpur, 721302

M. Reddy

Department of Computer Science and Engineering

Email: rpradeep@iitkgp.ac.in
Үндістан, IIT Kharagpur, 721302

K. Rao

Department of Computer Science and Engineering

Email: rpradeep@iitkgp.ac.in
Үндістан, IIT Kharagpur, 721302

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019