Kernel Fuzzy Kohonen’s Clustering Neural Network and It’s Recursive Learning


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The architecture of multilayer kernel clustering neuro-fuzzy system and algorithm of its self-learning are intended for the recovery of overlapped clusters in situations when the streams of observations are fed in the online mode is proposed. The designed system, based on the T. Kohonen’s self-organizing map, permits to recover linearly nonseparated data classes, processes information in an online mode, doesn’t suffer from the “curse of dimensionality” and is easy in implementation.

作者简介

Ye. Bodyanskiy

Kharkiv National University of Radio Electronics

Email: anastasiya.deineko@gmail.com
乌克兰, Kharkiv, 61166

A. Deineko

Kharkiv National University of Radio Electronics

编辑信件的主要联系方式.
Email: anastasiya.deineko@gmail.com
乌克兰, Kharkiv, 61166

F. Eze

Kharkiv National University of Radio Electronics

Email: anastasiya.deineko@gmail.com
乌克兰, Kharkiv, 61166

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018