On the Minimization Problem for Sequential Programs


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

First-order program schemata represent one of the most simple models of sequential imperative programs intended for solving verification and optimization problems. We consider the decidable relation of logical-thermal equivalence on these schemata and the problem of their size minimization while preserving logical-thermal equivalence. We prove that this problem is decidable. Further we show that the first-order program schemata supplied with logical-thermal equivalence and finite-state deterministic transducers operating over substitutions are mutually translated into each other. This relationship makes it possible to adapt equivalence checking and minimization algorithms developed in one of these models of computation to the solution of the same problems for the other model of computation. In addition, on the basis of the discovered relationship, we describe a subclass of first-order program schemata such that minimization of the program schemata from this class can be performed in polynomial time by means of known techniques for minimization of finite-state transducers operating over semigroups. Finally, we demonstrate that in the general case the minimization problem for finite state transducers over semigroups may have several non-isomorphic solutions.

作者简介

V. Zakharov

Faculty of Computer Science

编辑信件的主要联系方式.
Email: zakh@cs.msu.ru
俄罗斯联邦, Moscow, 101000

S. Jaylauova

Faculty of Computational Mathematics and Cybernetics

Email: zakh@cs.msu.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017