Asymptotic Integration of Certain Differential Equations in Banach Space


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this work, we investigate the problem of constructing asymptotic representations for weak solutions of a certain class of linear differential equations in the Banach space as an independent variable tends to infinity. We consider the class of equations that represent a perturbation of a linear autonomous equation, in general, with an unbounded operator. The perturbation takes the form of a family of bounded operators that, in a sense, oscillatorally decreases at infinity. It is assumed that the unperturbed equation satisfies the standard requirements of the center manifold theory. The essence of the proposed asymptotic integration method is to prove the existence of a center-like manifold (a critical manifold) for the initial equation. This manifold is positively invariant with respect to the initial equation and attracts all trajectories of the weak solutions. The dynamics of the initial equation on the critical manifold is described by the finite-dimensional system of ordinary differential equations. The asymptotics of the fundamental matrix of this system can be constructed by using the method developed by P.N. Nesterov for asymptotic integration of systems with oscillatory decreasing coefficients. We illustrate the proposed technique by constructing the asymptotic representations for solutions of the perturbed heat equation.

Об авторах

P. Nesterov

Demidov State University

Автор, ответственный за переписку.
Email: nesterov.pn@gmail.com
Россия, Yaroslavl, 150003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).