Asymptotic Integration of Certain Differential Equations in Banach Space


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, we investigate the problem of constructing asymptotic representations for weak solutions of a certain class of linear differential equations in the Banach space as an independent variable tends to infinity. We consider the class of equations that represent a perturbation of a linear autonomous equation, in general, with an unbounded operator. The perturbation takes the form of a family of bounded operators that, in a sense, oscillatorally decreases at infinity. It is assumed that the unperturbed equation satisfies the standard requirements of the center manifold theory. The essence of the proposed asymptotic integration method is to prove the existence of a center-like manifold (a critical manifold) for the initial equation. This manifold is positively invariant with respect to the initial equation and attracts all trajectories of the weak solutions. The dynamics of the initial equation on the critical manifold is described by the finite-dimensional system of ordinary differential equations. The asymptotics of the fundamental matrix of this system can be constructed by using the method developed by P.N. Nesterov for asymptotic integration of systems with oscillatory decreasing coefficients. We illustrate the proposed technique by constructing the asymptotic representations for solutions of the perturbed heat equation.

Sobre autores

P. Nesterov

Demidov State University

Autor responsável pela correspondência
Email: nesterov.pn@gmail.com
Rússia, Yaroslavl, 150003

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019