MAD-based Estimation of the Noise Level in the Contourlet Domain


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Noise-level estimation remains one of the most critical issues related to the contourlet-based approaches. In this paper, an investigation of an effective solution is directed from any redundant contourlet expansion. This is going to be addressed for the first time in that domain. In this proposition, the noise level is estimated as the median absolute value (MAD) of the finest multi-scale coefficients, calibrated by three correction parameters. This is done according to some visual classification of the natural images. The present estimator provides a better compromise between the image and the contourlet expansion nature, which makes the estimation results more accurate for a wide range of natural images, when compared to the best state-of-the-art methods. Therefore, it is extensively recommended for most of the contourlet-based image applications (Thresholding, filtering, etc.) thanks to its accuracy, simplicity, and rapidity.

Об авторах

Abdelhak Bouhali

Signal and Communications Lab., Ecole Nationale Polytechnique

Автор, ответственный за переписку.
Email: abdelhak.bouhali@g.enp.edu.dz
Алжир, El Harrach, Alger, 16200

Daoud Berkani

Signal and Communications Lab., Ecole Nationale Polytechnique

Автор, ответственный за переписку.
Email: daoud.berkani@g.enp.edu.dz
Алжир, El Harrach, Alger, 16200

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).