Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t − 1), where p, q > 0, q = 1 − p, pq. The variables Mn = ∫01tndL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.

Об авторах

E. Timofeev

Demidov Yaroslavl State University

Автор, ответственный за переписку.
Email: timofeevea@gmail.com
Россия, Yaroslavl, 150003

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).