Multi-cue based moving hand segmentation for gesture recognition


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper proposes a novel moving hand segmentation approach using skin color, grayscale, depth, and motion cues for gesture recognition. The proposed approach does not depend on unreasonable restrictions, and it can solve the problem of hand-over-face occlusion. First, an online updated skin color histogram (OUSCH) model is built to robustly represent skin color; second, according to the variance information of grayscale and depth optical flow, a motion region of interest (MRoI) is adaptively extracted to locate the moving body part (MBP) and reduce the impact of noise; then, Harris-Affine corners that satisfy skin color and adaptive motion constraints are adopted as skin seed points in the MRoI; next, the skin seed points are grown to obtain a candidate hand region utilizing skin color, depth and motion criteria; finally, boundary depth gradient, skeleton extraction, and shortest path search are employed to segment the moving hand region from the candidate hand region. Experimental results demonstrate that the proposed approach can accurately segment moving hand regions under different situations, especially when the face is occluded by a hand. Furthermore, this approach achieves higher segmentation accuracy than other state-of-the-art approaches.

Авторлар туралы

Jia Lin

Faculty of Information Technology

Хат алмасуға жауапты Автор.
Email: linjia.bjut@gmail.com
ҚХР, Beijing, 100124

Xiaogang Ruan

Faculty of Information Technology

Email: linjia.bjut@gmail.com
ҚХР, Beijing, 100124

Naigong Yu

Faculty of Information Technology

Email: linjia.bjut@gmail.com
ҚХР, Beijing, 100124

Jianxian Cai

Faculty of Information Technology

Email: linjia.bjut@gmail.com
ҚХР, Beijing, 100124

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2017