Multi-cue based moving hand segmentation for gesture recognition
- Авторы: Lin J.1, Ruan X.1, Yu N.1, Cai J.1
-
Учреждения:
- Faculty of Information Technology
- Выпуск: Том 51, № 3 (2017)
- Страницы: 193-203
- Раздел: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/174898
- DOI: https://doi.org/10.3103/S0146411617030063
- ID: 174898
Цитировать
Аннотация
This paper proposes a novel moving hand segmentation approach using skin color, grayscale, depth, and motion cues for gesture recognition. The proposed approach does not depend on unreasonable restrictions, and it can solve the problem of hand-over-face occlusion. First, an online updated skin color histogram (OUSCH) model is built to robustly represent skin color; second, according to the variance information of grayscale and depth optical flow, a motion region of interest (MRoI) is adaptively extracted to locate the moving body part (MBP) and reduce the impact of noise; then, Harris-Affine corners that satisfy skin color and adaptive motion constraints are adopted as skin seed points in the MRoI; next, the skin seed points are grown to obtain a candidate hand region utilizing skin color, depth and motion criteria; finally, boundary depth gradient, skeleton extraction, and shortest path search are employed to segment the moving hand region from the candidate hand region. Experimental results demonstrate that the proposed approach can accurately segment moving hand regions under different situations, especially when the face is occluded by a hand. Furthermore, this approach achieves higher segmentation accuracy than other state-of-the-art approaches.
Ключевые слова
Об авторах
Jia Lin
Faculty of Information Technology
Автор, ответственный за переписку.
Email: linjia.bjut@gmail.com
Китай, Beijing, 100124
Xiaogang Ruan
Faculty of Information Technology
Email: linjia.bjut@gmail.com
Китай, Beijing, 100124
Naigong Yu
Faculty of Information Technology
Email: linjia.bjut@gmail.com
Китай, Beijing, 100124
Jianxian Cai
Faculty of Information Technology
Email: linjia.bjut@gmail.com
Китай, Beijing, 100124
Дополнительные файлы
