Dynamics of a System of Two Simplest Oscillators with Compactly Supported Nonlinear Feedbacks
- Авторлар: Kashchenko A.A.1
-
Мекемелер:
- Demidov Yaroslavl State University
- Шығарылым: Том 51, № 7 (2017)
- Беттер: 639-644
- Бөлім: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175286
- DOI: https://doi.org/10.3103/S0146411617070124
- ID: 175286
Дәйексөз келтіру
Аннотация
In this paper, we consider a singularly perturbed system of two differential equations with delay, simulating two coupled oscillators with a nonlinear feedback. The feedback function is assumed to be compactly supported and piecewise-continuous and it is assumed that its sign is constant. In this paper, we prove the existence of relaxation periodic solutions and make conclusions about their stability. Using a special large-parameter method, we construct asymptotics of all solutions of the considered system under the assumption that the initial-value conditions belong to a certain class. Using this asymptotics, we construct a special mapping principally describing the dynamics of the original model. It is shown that the dynamics changes fundamentally as the coupling coefficient decreases: we have a stable homogeneous periodic solution if the coupling coefficient is on the order of unity and the dynamics become more complex as the coupling coefficient decreases (it is described by a special map). For small values of the coupling, we show that there are values of the parameters such that several different stable relaxation periodic regimes coexist in the original problem.
Негізгі сөздер
Авторлар туралы
A. Kashchenko
Demidov Yaroslavl State University
Хат алмасуға жауапты Автор.
Email: a.kashchenko@uniyar.ac.ru
Ресей, Yaroslavl, 150003
Қосымша файлдар
