ELM_Kernel and Wavelet Packet Decomposition Based EEG Classification Algorithm


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Rehabilitation technology based on brain-computer interface (BCI) has become a promising approach for patients with dyskinesia to regain movement. In this paper, a novel classification algorithm is proposed based on the characteristic of electroencephalogram (EEG) signals. Specifically wavelet packet decomposition (WPD) and Extreme learning machine with kernel (ELM_Kernel) algorithm are studied. In view of the existence of cross-banding of WPD, the average energy of the wavelet packets of the corresponding frequency bands which belong to the mu and beta rhythm are used to form the feature vectors that are classified by the ELM_Kernel algorithm. Simulation results demonstrate that the proposed algorithm produces a high probability of correct classification of 97.8% and outperforms state-of-the-art algorithms such as ELM, BP and SVM in terms of both training time and classification accuracy.

Негізгі сөздер

Авторлар туралы

Li Wang

National Research Center for Rehabilitation Technical Aids; Qinhuangdao Institute of National Research Center for Rehabilitation Technical Aids, Funing Economic
and Technological Development Zone

Хат алмасуға жауапты Автор.
Email: wangli@nrcrta.cn
ҚХР, BDA; Qinhuangdao

Zhi Lan

National Research Center for Rehabilitation Technical Aids

Email: wangli@nrcrta.cn
ҚХР, BDA

Qiang Wang

National Research Center for Rehabilitation Technical Aids

Email: wangli@nrcrta.cn
ҚХР, BDA

Rong Yang

National Research Center for Rehabilitation Technical Aids

Email: wangli@nrcrta.cn
ҚХР, BDA

Hongliang Li

National Research Center for Rehabilitation Technical Aids

Email: wangli@nrcrta.cn
ҚХР, BDA

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019