Adaptive Force-Vision Control of Robot Manipulator Using Sliding Mode and Fuzzy Logic
- 作者: Djelal N.1, Saadia N.1, Ramdane-Cherif A.2
-
隶属关系:
- Laboratory of Robotics, Parallelism and Embedded Systems, University of Science and Technology Houari Boumediene
- Laboratory LISV, University of Versailles Saint-Quentin en Yvelines
- 期: 卷 53, 编号 3 (2019)
- 页面: 203-213
- 栏目: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175822
- DOI: https://doi.org/10.3103/S0146411619030027
- ID: 175822
如何引用文章
详细
An adaptive sliding mode controller based on fuzzy logic is proposed to control a manipulator robot over unknown surface trajectory using force-vision tracking, considering uncertainties of the kinematic, dynamic, and camera models. In this work we show that the robot can track the desired trajectories overcoming the model’s uncertainties, the use of the sliding mode to reject the disturbances and converge much faster, a nonlinear sliding surface proposed to regulate the convergence speed in order to illuminate the overshoot of the system response, thanks to the online fuzzy logic adaption, used to generate the equivalent control. The system’s stability has been validated using Lyapunov criteria. So as to show the performance of the proposed control law, we performed simulations consisting of a series of tests in various conditions. The obtained results allowed us to validate the robustness of the controller towards the payload variations and the model’s uncertainties.
作者简介
N. Djelal
Laboratory of Robotics, Parallelism and Embedded Systems, University of Science and Technology Houari Boumediene
编辑信件的主要联系方式.
Email: ndjelal@usthb.dz
阿尔及利亚, USTHB P.O Box 32 El Alia, Bab Ezzouar Algiers, 16111
N. Saadia
Laboratory of Robotics, Parallelism and Embedded Systems, University of Science and Technology Houari Boumediene
编辑信件的主要联系方式.
Email: saadia_nadia@hotmail.com
阿尔及利亚, USTHB P.O Box 32 El Alia, Bab Ezzouar Algiers, 16111
A. Ramdane-Cherif
Laboratory LISV, University of Versailles Saint-Quentin en Yvelines
编辑信件的主要联系方式.
Email: rca@lisv.uvsq.fr
法国, 10/12 Avenue de l’Europe, Velizy, 78140
补充文件
