Using Radial Basis Function Neural Networks to identify river water data parameters


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The complex conditions of water dynamics create a challenge in selecting an appropriate neuron structure for artificial neural networks to simulate real river parameters. This study proposes an identification model based on Radial Basis Function (RBF) Neural Networks. We applied this identification model to river water quality parameters with different neuron node size scenarios to test network structure characters. Simulation results reveal that the RBF Neural Networks model achieves convergence through neuron iterations and the simulation error is well controlled within a small margin. The adjusting effect is closely related to structure design and the neuron updating strategy.

Авторлар туралы

Wei Wu

Institute of Deep-sea Science and Engineering; College of Information Science and Technology

Хат алмасуға жауапты Автор.
Email: wuwei@idsse.ac.cn
ҚХР, Sanya, 572000; Haikou, 570228

Wencai Du

College of Information Science and Technology; FITM

Email: wuwei@idsse.ac.cn
ҚХР, Haikou, 570228; Taipa, Macau

Jiezhuo Zhong

College of Information Science and Technology

Email: wuwei@idsse.ac.cn
ҚХР, Haikou, 570228

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2016