Using Radial Basis Function Neural Networks to identify river water data parameters


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The complex conditions of water dynamics create a challenge in selecting an appropriate neuron structure for artificial neural networks to simulate real river parameters. This study proposes an identification model based on Radial Basis Function (RBF) Neural Networks. We applied this identification model to river water quality parameters with different neuron node size scenarios to test network structure characters. Simulation results reveal that the RBF Neural Networks model achieves convergence through neuron iterations and the simulation error is well controlled within a small margin. The adjusting effect is closely related to structure design and the neuron updating strategy.

Sobre autores

Wei Wu

Institute of Deep-sea Science and Engineering; College of Information Science and Technology

Autor responsável pela correspondência
Email: wuwei@idsse.ac.cn
República Popular da China, Sanya, 572000; Haikou, 570228

Wencai Du

College of Information Science and Technology; FITM

Email: wuwei@idsse.ac.cn
República Popular da China, Haikou, 570228; Taipa, Macau

Jiezhuo Zhong

College of Information Science and Technology

Email: wuwei@idsse.ac.cn
República Popular da China, Haikou, 570228

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016