A review of channel estimation and security techniques for CRNS


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Cognitive Radio Network (CRN) is an intelligent wireless communication system that adapts itself to variations in the incoming radio frequency stimuli by modifying the operating parameters. Using the spectrum sensing techniques, the idle channels are detected, and allocated to the Secondary Users (SUs). The existing cooperative spectrum sensing techniques such as centralized sensing technique, Distributed sensing technique, and External sensing technique exploit efficient prediction models for allocating the frequency spectrum to SUs. For an optimal assignment of the channel using channel parameters, the channel estimation techniques such as pilot-assisted channel estimation, blind and semi blind estimation technique, and decision directed channel estimation technique are analyzed. The flexible nature of the CRN introduces various security attacks such as Primary User Emulation Attack, Objective Function Attack, Jamming Attack, Spectrum Sensing Data Falsification (SSDF), Control Channel Saturation DoS Attack (CCSD), Selfish Channel Negotiation (SCN), Sinkhole Attacks, HELLO Flood Attacks and Lion Attack. From the surveyed results, it is observed that the existing spectrum sensing, and prediction-based techniques consume more energy, and minimal data transmission rate for detecting the idle channel. Further, the end-to-end delay, energy consumption, end-to-end delay, and bandwidth are not minimized by the existing techniques.

Об авторах

S. Senthilkumar

Department of Computer Science and Engineering

Автор, ответственный за переписку.
Email: senthil.vbridge@gmail.com
Индия, Madurai, Tamil Nadu, 625301

C. Geetha Priya

Department of ECE

Email: senthil.vbridge@gmail.com
Индия, Virudhunagar, Tamil Nadu

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).