Difference Approximations of a Reaction–Diffusion Equation on Segments
- Авторлар: Glyzin S.D.1
-
Мекемелер:
- Demidov Yaroslavl State University
- Шығарылым: Том 52, № 7 (2018)
- Беттер: 762-776
- Бөлім: Article
- URL: https://journals.rcsi.science/0146-4116/article/view/175622
- DOI: https://doi.org/10.3103/S014641161807009X
- ID: 175622
Дәйексөз келтіру
Аннотация
The system of phase differences for a chain of diffuse weakly coupled oscillators on a stable integral manifold is constructed and analyzed. It is shown (by means of numerical methods) that Lyapunov dimension growth is close to linear as the number of oscillators in the chain increases. Extensive computations performed for the difference model of the Ginsburg–Landau equation illustrate this result and determine the applicability limits for asymptotic methods.
Негізгі сөздер
Авторлар туралы
S. Glyzin
Demidov Yaroslavl State University
Хат алмасуға жауапты Автор.
Email: glyzin@uniyar.ac.ru
Ресей, Yaroslavl, 150003
Қосымша файлдар
