Deep Mining of Redundant Data in Wireless Sensor Network Based on Genetic Algorithm


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Mining effective data from wireless sensor network node data is one of the main subjects in studies concerning wireless sensor network data processing. Wireless sensor network data are muli-dimensional and dynamic. Generally, data mining technology cannot satisfy the requirements of wireless sensor network. A large amount of accumulated and redundant wireless sensor network monitoring data reduces the efficiency of data processing. To solve the above problems, this study proposed a data mining algorithm, which integrated rough set algorithm and genetic algorithm to mine redundant data in node network data. The results of the simulated calculation based on MATLAB platform suggested that the identification rate, false accept rate and reject rate of the proposed algorithm were 94.65, 1.753 and 2.331%; compared to network data mining algorithm based on improved genetic algorithm, it has higher efficiency and accuracy in data mining. The algorithm could effectively excavate redundant data in wireless sensor network and optimize the operation environment of wireless sensor network. The application of the rough set and genetic algorithm based data mining algorithm in wireless network has a promising prospect.

作者简介

Haijun Diao

Basic Department

编辑信件的主要联系方式.
Email: diaohaijun_001@163.com
中国, Xuzhou, Jiangsu, 221116

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018