Реакции иммунной системы тихоокеанской устрицы Magallana gigas (Thunberg, 1793) при поражении сверлящей губкой Pione vastifica (Hancock, 1849)
- Авторы: Лавриченко Д.С.1, Челебиева Э.С.1, Подольская М.С.1, Андреева А.Ю.1, Кладченко Е.С.1
-
Учреждения:
- Институт биологии южных морей им. А. О. Ковалевского Российской академии наук
- Выпуск: Том 51, № 2 (2025)
- Страницы: 91-100
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Статья одобрена: 28.05.2025
- Статья опубликована: 28.05.2025
- URL: https://journals.rcsi.science/0134-3475/article/view/293912
- DOI: https://doi.org/10.31857/S0134347525020039
- EDN: https://elibrary.ru/GBTCJO
- ID: 293912
Цитировать
Аннотация
Тихоокеанская устрица Magallana gigas (Thunberg, 1793) является одним из наиболее распространенных объектов культивирования в мире. Несмотря на устойчивость этого вида к большинству патогенов, устричные фермы все чаще сталкиваются с проблемами, связанными с заражением различными организмами. Одним из наиболее опасных эпибионтов-вредителей является сверлящая губка Pione vastifica (Hancock, 1849). Целью данного исследования было определить влияние заражения губкой P. vastifica на иммунные параметры устрицы M. gigas. Ключевые параметры неспецифического иммунного ответа — клеточный состав гемолимфы, продукция активных форм кислорода и фагоцитарная активность, были исследованы в образцах гемолимфы методами проточной цитометрии и флуоресцентной микроскопии. У устриц с признаками перфорации раковины была обнаружена активация иммунной системы, выражавшаяся в повышении уровня продукции активных форм кислорода основными иммунными клетками гранулоцитами, а также в повышении фагоцитарной активности гранулоцитов и гиалиноцитов. При этом относительное количество гранулоцитов у устриц, пораженных сверлящей губкой, было значительно ниже, чем у здоровых особей. Поскольку гемоциты двустворчатых моллюсков участвуют в процессах биоминерализации, последний результат может свидетельствовать об инфильтрации гемоцитов в мантию, которая является основной тканью, ответственной за репарацию раковины. Это первое исследование, посвященное изучению иммунной системы тихоокеанских устриц, пораженных сверлящими губками. Полученные результаты помогают понять, как организм устриц реагирует на присутствие таких опасных эпибионтов-вредителей, как сверлящие губки.
Ключевые слова
Полный текст

Об авторах
Д. С. Лавриченко
Институт биологии южных морей им. А. О. Ковалевского Российской академии наук
Email: kladchenko_ekaterina@bk.ru
ORCID iD: 0009-0009-1148-3427
Россия, Севастополь
Э. С. Челебиева
Институт биологии южных морей им. А. О. Ковалевского Российской академии наук
Автор, ответственный за переписку.
Email: kladchenko_ekaterina@bk.ru
ORCID iD: 0000-0002-7662-2573
Россия, Севастополь
М. С. Подольская
Институт биологии южных морей им. А. О. Ковалевского Российской академии наук
Email: kladchenko_ekaterina@bk.ru
ORCID iD: 0000-0001-8185-3985
Россия, Севастополь
А. Ю. Андреева
Институт биологии южных морей им. А. О. Ковалевского Российской академии наук
Email: kladchenko_ekaterina@bk.ru
ORCID iD: 0000-0001-7845-0165
Россия, Севастополь
Е. С. Кладченко
Институт биологии южных морей им. А. О. Ковалевского Российской академии наук
Email: kladchenko_ekaterina@bk.ru
ORCID iD: 0000-0001-9476-6573
Россия, Севастополь
Список литературы
- Мальцев В.И., Петрова В.Н. Прибрежный ихтиокомплекс акватории ландшафтного рекреационного парка “Тихая бухта” (Юго-восточный Крым, Чёрное море) по результатам визуальных учётов // Вестн. Керченского гос. мор. технол. ун-та. 2021. № 3. С. 66–83. https://doi.org/10.47404/2619-0605_2021_2_66
- Allam B., Espinosa E.P. Bivalve immunity and response to infections: are we looking at the right place? // Fish Shellfish Immunol. 2016. V. 53. P. 4–12. https://doi.org/10.1016/j.fsi.2016.03.037
- Andreyeva A.Y., Kladchenko E.S., Vyalova O.Y., Kukhareva T.A. Functional characterization of the Pacific oyster, Crassostrea gigas (Bivalvia: Ostreidae), hemocytes under normoxia and short-term hypoxia // Turk. J. Fish. Aquat. Sci. 2021. V. 21. № 3. P. 125–133. https://doi.org/10.4194/1303-2712-v21_3_03
- Andreyeva A.Y., Kukhareva T.A., Gostyukhina O.L. et al. Impacts of ocean acidification and hypoxia on cellular immunity, oxygen consumption and antioxidant status in Mediterranean mussel // Fish Shellfish Immunol. 2024. V. 154. Art. ID109932. https://doi.org/10.1016/j.fsi.2024.109932
- Baden S., Hernroth B., Lindahl O. Declining populations of Mytilus spp. in North Atlantic coastal waters — a Swedish perspective // J. Shellfish Res. 2021. V. 40. № 2. P. 269–296. https://doi.org/10.2983/035.040.0207
- Brokordt K., Defranchi Y., Espósito I. et al. Reproduction immunity trade-off in a mollusk: hemocyte energy metabolism underlies cellular and molecular immune responses // Front. Physiol. 2019. V. 10. Art. ID77. https://doi.org/10.3389/fphys.2019.00077
- Burgsdorf I., Sizikov S., Squatrito V. et al. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool // ISME J. 2022. V. 16. № 4. P. 1163–1175. https://doi.org/10.1038/s41396-021-01165-9
- Carballal M.J., Villalba A., López C. Seasonal variation and effects of age, food availability, size, gonadal development, and parasitism on the hemogram of Mytilus galloprovincialis // J. Invertebr. Pathol. 1998. V. 72. № 3. P. 304–312. https://doi.org/10.1006/jipa.1998.4779
- Carroll J.M., OʼShaughnessy K.A., Diedrich G.A., Finelli C.M. Are oysters being bored to death? Influence of Cliona celata on Crassostrea virginica condition, growth and survival // Dis. Aquat. Org. 2015. V. 117. № 1. P. 31–44. https://doi.org/10.3354/dao02928
- Chelebieva E.S., Lavrichenko D.S., Gostyukhina O.L. et al. The boring sponge (Pione vastifica, Hancock, 1849) induces oxidative stress in the Pacific oyster (Magallana gigas, Thunberg, 1793) // Comp. Biochem. Physiol. Pt. B: Biochem. Mol. Biol. 2024. V. 273. Art. ID110980. https://doi.org/10.1016/j.cbpb.2024.110980
- Cheng G., Lambeth J.D. NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain // J. Biol. Chem. 2004. V. 279. № 6. P. 4737–4742. https://doi.org/10.1074/jbc.M305968200
- Ciacci C., Betti M., Canonico B. et al. Specificity of anti-Vibrio immune response through p38 MAPK and PKC activation in the hemocytes of the mussel Mytilus galloprovincialis // J. Invertebr. Pathol. 2010. V. 105. № 1. P. 49–55. https://doi.org/10.1016/j.jip.2010.05.010
- Comps M., Bonami J.R., Vago C. A virus disease of the Portuguese oyster (Crassostrea angulata Lmk) // C.R. Acad. Sci. Paris. Sér. D. 1976. V. 282. № 22. P. 139–143.
- Daume S., Fromont J., Parker F. et al. Quantifying sponge erosions in Western Australian pearl oyster shells //Aquacult. Res. 2010. V. 41. № 9. P. e260–e267. https://doi.org/10.1111/j.1365-2109.2010.02518.x
- Davinack A.A., Strong M., Brennessel B. Worms on the Cape: an integrative survey of polydorid infestation in wild and cultivated oysters (Crassostrea virginica) from Massachusetts, USA // Aquaculture. 2024. V. 581. Art. ID740366. https://doi.org/10.1016/j.aquaculture.2023.740366
- De la Ballina N.R., Maresca F., Cao A., Villalba A. Bivalve haemocyte subpopulations: a review // Front. Immunol. 2022. V. 13. Art. ID826255.
- https://doi.org/10.3389/fimmu.2022.826255
- Demann F., Wegner K.M. Infection by invasive parasites increases susceptibility of native hosts to secondary infection via modulation of cellular immunity // J. Anim. Ecol. 2019. V. 88. № 3. P. 427–438. https://doi.org/10.1111/1365-2656.12939
- Dieudonne J., Carroll J.M. The impacts of boring sponges on oyster health across multiple sites and tidal heights // Estuaries Coasts. 2022. V. 45. № 1. P. 213–224. https://doi.org/10.1007/s12237-021-00942-1
- Donaghy L., Kim B.K., Hong H.K. et al. Flow cytometry studies on the populations and immune parameters of the hemocytes of the Suminoe oyster, Crassostrea ariakensis // Fish Shellfish Immunol. 2009. V. 27. № 2. P. 296–301. https://doi.org/10.1016/j.fsi.2009.05.010
- Evariste L., Auffret M., Audonnet S. et al. Functional features of hemocyte subpopulations of the invasive mollusk species Dreissena polymorpha // Fish Shellfish Immunol. 2016. V. 56. P. 144–154. https://doi.org/10.1016/j.fsi.2016.06.054
- Faisal M., MacIntyre E.A., Adham K.G. et al. Evidence for the presence of protease inhibitors in eastern (Crassostrea virginica) and Pacific (Crassostrea gigas) oysters // Comp. Biochem. Physiol. Pt. B: Biochem. Mol. Biol. 1998. V. 121. № 2. P. 161–168. https://doi.org/10.1016/s0305-0491(98)10084-6
- Fallet M., Montagnani C., Petton B. et al. Early life microbial exposures shape the Crassostrea gigas immune system for lifelong and intergenerational disease protection // Microbiome. 2022. V. 10. № 1. Art. ID85. https://doi.org/10.1186/s40168-022-01280-5
- Ferrario F., Calcinai B., Erpenbeck D. et al. Two Pione species (Hadromerida, Clionaidae) from the Red Sea: a taxonomical challenge // Org. Diversity Evol. 2010. V. 10. P. 275–285. https://doi.org/10.1007/s13127-010-0027-x
- Freire J.M.S., Farias N.D., Hégaret H., Da Silva P.M. Morphological and functional characterization of the oyster Crassostrea gasar circulating hemocytes: cell types and phagocytosis activity // Fish Shellfish Immunol. Rep. 2023. V. 4. Art. ID100089. https://doi.org/10.1016/j.fsirep.2023.100089
- Gajbhiye D.S., Khandeparker L. Immune response of the short neck clam Paphia malabarica to salinity stress using flow cytometry // Mar. Environ. Res. 2017. V. 129. P. 14–23. https://doi.org/10.1016/j.marenvres.2017.04.009
- Gu J., Zhang H., Wen C. et al. Purification, characterization, antioxidant and immunological activity of polysaccharide from Sagittaria sagittifolia L. // Food Res. Int. 2020. V. 136. Art. ID109345. https://doi.org/10.1016/j.foodres.2020.109345
- Hanley T.C., White J.W., Stallings C.D., Kimbro D.L. Environmental gradients shape the combined effects of multiple parasites on oyster hosts in the northern Gulf of Mexico // Mar. Ecol. Prog. Ser. 2019. V. 612. P. 111–125. https://doi.org/10.3354/meps12849
- Jiang S., Jia Z., Zhang T. et al. Functional characterisation of phagocytes in the Pacific oyster Crassostrea gigas // Peer J. 2016. V. 4. Art. ID e2590. https://doi.org/10.7717/peerj.2590
- Kim J.H., Lee H.M., Cho Y.G. et al. Flow cytometric characterization of the hemocytes of blood cockles Anadara broughtonii (Schrenck, 1867), Anadara kagoshimensis (Lischke, 1869), and Tegillarca granosa (Linnaeus, 1758) as a biomarker for coastal environmental monitoring // Mar. Pollut. Bull. 2020. V. 160. Art. ID111654. https://doi.org/10.1016/j.marpolbul.2020.111654
- Kingma E. The role of the excavating sponge Cliona celata in oyster shells / Masterʼs thesis. 2022.
- Kladchenko E.S., Chelebieva E.S., Podolskaya M.S. et al. Effects of boring sponge Pione vastifica (Hancock, 1849) infestation on redox status and histological structure in Pacific oyster Magallana gigas (Thunberg, 1793) gills // Ecol. Montenegr. 2024. V. 77. P. 211–223. https://doi.org/10.37828/em.2024.77.21
- Kumar P.S. Bioeroding sponges in aquaculture systems // Marine sponges: Chemicobiological and biomedical applications. 2016. P. 53–56. https://doi.org/10.1007/978-81-322-2794-6_4
- Labreuche Y., Soudant P., Gonçalves M. et al. Effects of extracellular products from the pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas // Dev. Comp. Immunol. 2006a. V. 30. № 4. P. 367–379. https://doi.org/10.1016/j.dci.2005.05.003
- Labreuche Y., Lambert C., Soudant P. et al. Cellular and molecular hemocyte responses of the Pacific oyster, Crassostrea gigas, following bacterial infection with Vibrio aestuarianus strain 01/32 // Microbes Infect. 2006b. V. 8. № 12–13. P. 2715–2724. https://doi.org/10.1016/j.micinf.2006.07.020
- Lambert C., Soudant P., Choquet G., Paillard C. Measurement of Crassostrea gigas hemocyte oxidative metabolism by flow cytometry and the inhibiting capacity of pathogenic vibrios // Fish Shellfish Immunol. 2003. V. 15. № 3. P. 225–240. https://doi.org/10.1016/s1050-4648(02)00160-2
- Lau Y.T., Gambino L., Santos B. et al. Transepithelial migration of mucosal hemocytes in Crassostrea virginica and potential role in Perkinsus marinus pathogenesis // J. Invertebr. Pathol. 2018. V. 153. P. 122–129. https://doi.org/10.1016/j.jip.2018.03.004
- Li H., Parisi M.G., Toubiana M. et al. Lysozyme gene expression and hemocyte behaviour in the Mediterranean mussel, Mytilus galloprovincialis, after injection of various bacteria or temperature stresses // Fish Shellfish Immunol. 2008. V. 25. № 1–2. P. 143–152. https://doi.org/10.1016/j.fsi.2008.04.001
- Longshaw M., Feist S.W., Bateman K.S. Parasites and pathogens of the endosymbiotic pea crab (Pinnotheres pisum) from blue mussels (Mytilus edulis) in England // J. Invertebr. Pathol. 2012. V. 109. № 2. P. 235–242. https://doi.org/10.1016/j.jip.2011.11.011
- Lushchak V.I. Environmentally induced oxidative stress in aquatic animals // Aquat. Toxicol. 2011. V. 101. № 1. P. 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006
- Lv Z., Qiu L., Wang W. et al. RGD-labeled hemocytes with high migration activity display a potential immunomodulatory role in the pacific oyster Crassostrea gigas // Front. Immunol. 2022. V. 13. Art. ID914899. https://doi.org/10.3389/fimmu.2022.914899
- Mann R.L., Burreson E.M., Baker P.K. The decline of the Virginia oyster fishery in Chesapeake Bay: considerations for introduction of a non-endemic species, Crassostrea gigas (Thunberg, 1793) // J. Shellfish Res. 1991. V. 10. № 2. Art. ID379.
- Mao Che L., Le Campion-Alsumard T., Boury-Esnault N. et al. Biodegradation of shells of the black pearl oyster, Pinctada margaritifera var. cumingii, by microborers and sponges of French Polynesia // Mar. Biol. 1996. V. 126. P. 509–519.
- Martinelli J.C., Lopes H.M., Hauser L. et al. Confirmation of the shell-boring oyster parasite Polydora websteri (Polychaeta: Spionidae) in Washington State, USA // Sci. Rep. 2020. V. 10. № 1. Art. No. 3961. https://doi.org/10.1038/s41598-020-60805-w
- Martínez-García M.F., Ruesink J.L., Grijalva-Chon J.M. et al. Socioecological factors related to aquaculture introductions and production of Pacific oysters (Crassostrea gigas) worldwide // Rev. Aquacult. 2022. V. 14. № 2. P. 613–629. https://doi.org/10.1111/raq.12615
- Miossec L., Le Deuff R.M., Goulletquer P. Alien species alert: Crassostrea gigas (Pacific oyster) // ICES Coop. Res. Rep. 2009. № 299. https://doi.org/10.17895/ices.pub.5417
- Montes J.F., Del Rió J.A., Durfort M., García-Valero J. The protozoan parasite Perkinsus atlanticus elicits a unique defensive response in the clam Tapes semidecussatus // Parasitology. 1997. V. 114. № 4. P. 339–349. https://doi.org/10.1017/S003118209600861X
- Montes J.F., Durfort M., García-Valero J. Cellular defence mechanism of the clam Tapes semidecussatus against infection by the protozoan Perkinsus sp. // Cell Tissue Res. 1995. V. 279. P. 529–538. https://doi.org/10.1007/bf00318165
- Moore J.D. Disease and potential disease agents in wild and cultured abalone // Abalone: Biology, ecology, aquaculture and fisheries. Elsevier. 2023. P. 189–250. (Dev. Aquacult. Fish. Sci.; V. 42). https://doi.org/10.1016/B978-0-12-814938-6.00007-5
- Okon E.M., Birikorang H.N., Munir M.B. et al. A global analysis of climate change and the impacts on oyster diseases // Sustainability. 2023. V. 15. № 17. Art. ID12775. https://doi.org/10.3390/su151712775
- Orensanz J.M., Schwindt E., Pastorino G. et al. No longer the pristine confines of the world ocean: a survey of exotic marine species in the southwestern Atlantic // Biol. Invasions. 2002. V. 4. P. 115–143. https://doi.org/10.1023/A:1020596916153
- Panebianco A., Rey-Campos M., Romero A. et al. Mytilus galloprovincialis releases immunologically functional haemocytes to the intervalvar space in response to tissue injury and infection // Fish Shellfish Immunol. 2023. V. 138. Art. ID108806. https://doi.org/10.1016/j.fsi.2023.108806
- Parisi M.G., Li H., Jouvet L.B. et al. Differential involvement of mussel hemocyte sub-populations in the clearance of bacteria // Fish Shellfish Immunol. 2008. V. 25. № 6. P. 834–840. https://doi.org/10.1016/j.fsi.2008.09.005
- Park K.I., Lee M., Liu Y. et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons // Adv. Mater. 2012. V. 24. № 22. P. 2999–3004. https://doi.org/10.1002/adma.201200105
- Peng M., Cardoso J.C., Pearson G. et al. Core genes of biomineralization and cis-regulatory long non-coding RNA regulate shell growth in bivalves // J. Adv. Res. 2024. V. 64. P. 117–129. https://doi.org/10.1016/j.jare.2023.11.024
- Petton B., Destoumieux-Garzón D., Pernet F. et al. The Pacific oyster mortality syndrome, a polymicrobial and multifactorial disease: state of knowledge and future directions // Front. Immunol. 2021. V. 12. Art. ID630343. https://doi.org/10.3389/fimmu.2021.630343
- Proestou D.A., Sullivan M.E. Variation in global transcriptomic response to Perkinsus marinus infection among eastern oyster families highlights potential mechanisms of disease resistance // Fish Shellfish Immunol. 2020. V. 96. P. 141–151. https://doi.org/10.1016/j.fsi.2019.12.001
- Pyecroft S.B. Shell-boring polychaetes (mudworms) and sponges affecting oysters, scallops, and abalone // Aquaculture pathophysiology. V. 2: Crustacean and mollusks diseases. Acad. Press, 2022. P. 583–591. https://doi.org/10.1016/B978-0-323-95434-1.00077-2
- Rey-Campos M., Moreira R., Valenzuela-Muñoz V. et al. High individual variability in the transcriptomic response of Mediterranean mussels to Vibrio reveals the involvement of myticins in tissue injury // Sci. Rep. 2019. V. 9. № 1. Art. No. 3569. https://doi.org/10.1038/s41598-019-39870-3
- Rioult D., Lebel J.M., Le Foll F. Cell tracking and velocimetric parameters analysis as an approach to assess activity of mussel (Mytilus edulis) hemocytes in vitro // Cytotechnology. 2013. V. 65. P. 749–758. https://doi.org/10.1007/s10616-013-9558-2
- Rosell D., Uriz M.J., Martin D. Infestation by excavating sponges on the oyster (Ostrea edulis) populations of the Blanes littoral zone (north-western Mediterranean Sea) // J. Mar. Biol. Assoc. U. K., 1999. V. 79. № 3. P. 409–413.
- Rützler K., Stone S.M. Discovery and significance of Albany Hancock’s microscope preparations of excavating sponges (Porifera: Hadromerida: Clionidae) // Proc. Biol. Soc. Wash. 1986. V. 99. P. 658–675.
- Takahashi K.G., Izumi-Nakajima N., Mori K. Unique phagocytic properties of hemocytes of Pacific oyster Crassostrea gigas against yeast and yeast cell-wall derivatives // Fish Shellfish Immunol. 2017. V. 70. P. 575–582.
- Terahara K., Takahashi K.G. Mechanisms and immunological roles of apoptosis in molluscs // Curr. Pharm. Des. 2008. V. 14. № 2. P. 131–137. https://doi.org/10.2174/138161208783378725
- Warme J.E., Marshall N.F. Marine borers in calcareous terrigenous rocks of the Pacific coast // Am. Zool. 1969. V. 9. № 3. P. 765–774. https://doi.org/10.1093/icb/9.3.765
- Watts J.C., Carroll J.M., Munroe D.M., Finelli C.M. Examination of the potential relationship between boring sponges and pea crabs and their effects on eastern oyster condition // Dis. Aquat. Org. 2018. V. 130. № 1. P. 25–36.
- Weng N., Meng J., Huo S. et al. Hemocytes of bivalve mollusks as cellular models in toxicological studies of metals and metal-based nanomaterials // Environ. Pollut. 2022. V. 312. Art. ID120082. https://doi.org/10.1016/j.envpol.2022.120082
- Yang Q., Yu X., Du C. et al. Bacterial challenge undermines the innate immune response in Hyriopsis cumingii // Aquaculture. 2021. V. 530. Art. ID735783.
- Yarra T., Ramesh K., Blaxter M. et al. Transcriptomic analysis of shell repair and biomineralization in the blue mussel, Mytilus edulis // BMC Genomics. 2021. V. 22. № 1. Art. ID437.
- Zundelevich A., Lazar B., Ilan M. Chemical versus mechanical bioerosion of coral reefs by boring sponges-lessons from Pione cf. vastifica // J. Exp. Biol. 2007. V. 210. № 1. P. 91–96. https://doi.org/10.1242/jeb.02627
Дополнительные файлы
