Viruses of the Ocean: On the Shores of the Aqua Incognita. Horizons of the Taxonomic Diversity
- Authors: Khotimchenko Y.S.1,2, Shchelkanov M.Y.1,2,3
-
Affiliations:
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
- Far Eastern Federal University
- Somov Research Institute of Epidemiology and Microbiology, Rospotrebnadzor
- Issue: Vol 50, No 1 (2024)
- Pages: 3-41
- Section: ОБЗОР
- Accepted: 11.06.2024
- Published: 15.02.2024
- URL: https://journals.rcsi.science/0134-3475/article/view/256761
- DOI: https://doi.org/10.31857/S0134347524010018
- ID: 256761
Cite item
Abstract
In recent years, marine viruses have evolved into a distinct branch of virology, yet they still represent a sort of “dark matter”, and their role and significance in the evolution and functioning of Earth's biosphere remain unclear. The widespread implementation of the primerless sequencing methods in routine laboratory practice has streamlined the development of marine virology from initial observations of virus-like particles in seawater, once deemed exotic, to comprehensive generalizations that reshape our understanding of global problems in the World Ocean. They include the continuous depletion of biological resources and diversity, marine pollution, and global climate change. Nevertheless, in terms of virology, the World Ocean remains a true aqua incognita, and marine virology, as a subset of general virology, and marine biology are just at the initial stages of their development, standing on the cusp of new discoveries. Those discoveries have the potential to reveal fundamental processes in the origin and evolution of life on Earth, accelerate the development of novel technologies, and even foster innovative approaches to reshaping the noosphere. The aim of this review is to draw scientific attention to the numerous problematic aspects of viruses in the World Ocean. It covers the main topics such as the current taxonomy of marine viruses, their role in marine ecosystems, the presence of viruses in marine species and related diseases, and the role of marine viruses in the context of global climate change, focusing on unexplored area and outlining directions for future research studies.
Keywords
Full Text

About the authors
Yu. S. Khotimchenko
Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University
Author for correspondence.
Email: yukhotimchenko@mail.ru
ORCID iD: 0000-0002-6979-1934
Russian Federation, Vladivostok, 690041; Vladivostok, 690922
M. Yu. Shchelkanov
Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University; Somov Research Institute of Epidemiology and Microbiology, Rospotrebnadzor
Email: yukhotimchenko@mail.ru
ORCID iD: 0000-0001-8610-7623
Russian Federation, Vladivostok, 690041; Vladivostok, 690922; Vladivostok, 690087
References
- Аристова В.А., Колобухина Л.В., Щелканов М.Ю., Львов Д.К. Экология вируса Крымской-Конго геморрагической лихорадки и особенности клиники на территории России и сопредельных стран // Вопр. вирусологии. 2001. Т. 46. № 4. С. 7–15.
- Беседнова Н.Н., Андрюков Б.Г., Запорожец Т.С. и др. Оболочечные вирусы – патогенетическая мишень лектинов цианобактерий // Антибиотики и химиотерапия. 2022. Т. 67. № 5−6. С. 39–60.
- Какарека Н.Н., Козловская З.Н., Волков Ю.Г. и др. Неповирусы (Picornavirales, Secoviridae, Nepovirus) на юге Дальнего Востока: результаты многолетнего мониторинга // Юг России: экология, развитие. 2017. № 4. С. 105–119.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Гидродинамика. М.: Наука. 1988. Т. 10. 736 с.
- Львов Д.К., Аристова В.А., Бутенко А.М. и др. Вирусы серогруппы Калифорнийского энцефалита и вызываемые ими заболевания: клинико-эпидемиологическая характеристика, географическое распространение, методы вирусологической и серологической диагностики. М.: РАМН. 2003. 41 с.
- Львов Д.К., Ямникова С.С., Федякина И.Т. и др. Экология и эволюция вирусов гриппа в России (1979−2002 гг.) // Вопр. вирусологии. 2004. Т. 49. № 3. С. 17–24.
- Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. Ред. Д.К. Львов. М.: МИА. 2013. 1200 с.
- Щелканов М.Ю. Этиология COVID-19. В кн.: COVID-19: от этиологии до вакцинопрофилактики. М.: ГЭОТАР-Медиа. 2023. С. 11–53.
- Щелканов М.Ю., Дунаева М.Н., Москвина Т.В. и др. Каталог вирусов рукокрылых (2020) // Юг России: экология, развитие. 2020а. Т. 15. № 3. С. 6–30.
- Щелканов М.Ю., Еремин В.Ф., Сахурия И.Б. и др. Дегидрогеназная активность инфицированных клеток и биологические свойства различных вариантов ВИЧ-1 // Биохимия. 1999. Т. 64. № 4. С. 513–519.
- Щелканов М.Ю., Какарека Н.Н., Волков Ю.Г., Толкач В.Ф. Становление фитовирусологии на Дальнем Востоке в контексте развития отечественной вирусологии. Владивосток: Изд-во ДВФУ. 2022. 142 с.
- Щелканов М.Ю., Колобухина Л.В., Бургасова О.А. и др. COVID-19: этиология, клиника, лечение // Инфекция и иммунитет. 2020б. Т. 10. № 3. С. 421–445.
- Щелканов М.Ю., Леонова Г.Н., Галкина И.В., Андрюков Б.Г. У истоков концепции природной очаговости // Здоровье населения и среда обитания. 2021а. № 5. С. 16–25.
- Щелканов М.Ю., Львов Д.К. Генотипическая структура рода Influenza A virus // Вестн. РАМН. 2011. № 5. С. 19–23.
- Щелканов М.Ю., Львов Д.К. Новый субтип вируса гриппа А от летучих мышей и новые задачи эколого-вирусологического мониторинга // Вопр. вирусологии. 2012. Приложение 1. С. 159–168.
- Щелканов М.Ю., Попова А.Ю., Дедков В.Г. и др. История изучения и современная классификация коронавирусов (Nidovirales: Coronaviridae) // Инфекция и иммунитет. 2020в. Т. 10. № 2. С. 221–246.
- Щелканов М.Ю., Суняйкин А.Б., Коваленко Т.С., Львов Д.К. Современная таксономия пикорнавирусов (Picornavirales, Picornaviridae) // Инфекционные болезни: новости, мнения, обучение. 2015. № 3. С. 53–64.
- Щелканов М.Ю., Табакаева Т.В., Любченко Е.Н. и др. Рукокрылые: общая характеристика отряда. Владивосток: Изд-во ДВФУ. 2021б. 130 с.
- Щелканов М.Ю., Федякина И.Т., Прошина Е.С. и др. Таксономическая структура Orthomyxoviridae: современное состояние и ближайшие перспективы // Вестн. РАМН. 2011. № 5. С. 12–19.
- Щелканов М.Ю., Шульгина М.А., Степаньков А.П. и др. Инфекционная анемия лососевых // Юг России: экология, развитие. 2017. Т. 12. № 2. С. 120–134.
- Abergel C., Claverie J.-M. Giant viruses // Curr. Biol. 2020. V. 30. P. R1108–R1110.
- Adams M.J., Lefkowitz E.J., King A.M.Q. et al. 50 years of the International Committee on Taxonomy of Viruses: progress and prospects // Arch. Virol. 2017. V. 162. P. 1441–1446.
- Adriaenssens E.M. Phage diversity in the human gut microbiome: a taxonomist’s perspective // mSystems. 2021. V. 6. e0079921. https://doi.org/10.1128/mSystems.00799-21
- Ahlers L.R., Bastos R.G., Hiroyasu A., Goodman A.G. Invertebrate iridescent virus 6, a DNA virus, stimulates a mammalian innate immune response through RIG-I- like receptors // PLoS One. 2016. V. 11. e0166088. https://doi.org/10.1371/journal.pone.0166088
- Ahlgren N.A., Fuchsman C.A., Rocap G., Fuhrman J.A. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes // ISME J. 2019. V. 13. P. 618–631. https://doi.org/10.1038/s41396-018-0289-4
- Ambalavanan L., Iehata S., Fletcher R. et al. A review of marine viruses in coral ecosystem // J. Mar. Sci. Eng. 2021. V. 9. № 7. P. 711. https://doi.org/10.3390/jmse9070711
- Anthony S., Epstein J.H., Murray K.A. et al. A strategy to estimate unknown viral diversity in mammals // MBio. 2013. V. 4. P. 1–15. https://doi.org/10.1128/mBio.00598-13
- Arnold B.J., Huang I-T., Hanage W.P. Horizontal gene transfer and adaptive evolution in bacteria // Nat. Rev. Microbiol. 2022. V. 20. P. 206–218.
- Arnold H.P., Zillig W., Ziese U. et al. A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus // Virology. 2000. V. 267. P. 252–266. https://doi.org/10.1038/s41579-021-00650-4
- Bagga S., Bouchard M.J. Cell cycle regulation during viral infection // Cell cycle control: Mechanisms and protocol. Methods Mol. Biol. Springer. 2014. V. 1170. P. 165–227. https://doi.org/10.1007/978-1-4939-0888-2_10
- Baltimore D. Expression of animal virus genomes // Bacteriol. Rev. 1971. V. 35. P. 235–241. https://doi.org/10.1128/br.35.3.235-241.1971
- Bar-On Y.M., Milo R. The biomass composition of the oceans: a blueprint of our blue planet // Cell. 2019. V. 179. P. 1451–1454. https://doi.org/10.1016/j.cell.2019.11.018
- Baquero D.P., Liu Y., Wang F. et al. Structure and assembly of archaeal viruses // Adv. Virus Res. 2020. V. 108. P. 127–164. https://doi.org/10.1016/bs.aivir.2020.09.004
- Bergh Ø., Boutrup T.S., Johansen R. et al. Viral haemorrhagic septicemia virus (VHSV) isolated from Atlantic herring, Clupea harengus, causes mortality in bath challenge on juvenile herring // Viruses. 2023. V. 15. Art. ID 152. https://doi.org/10.3390/v15010152
- Besednova N.N., Andryukov B.G., Zaporozhets T.S. et al. Antiviral effects of polyphenols from marine algae // Biomedicines. 2021. V. 9. P. 1–23. https://doi.org/10.3390/biomedicines9020200
- Boras J.A., Sala M.M., Vázquez-Domínguez E. et al. Annual changes of bacterial mortality due to viruses and protists in an oligotrophic coastal environment (NW Mediterranean) // Environ. Microbiol. 2009. V. 11. P. 1181–1193. https://doi.org/10.1111/j.1462-2920.2008.01849.x
- Børsheim K.Y., Bratbak G., Heldal M. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy // Appl. Environ. Microbiol. 1990. V. 56. P. 352−356. https://doi.org/10.1128/aem.56.2.352-356.1990
- Breitbart M. Marine viruses: truth or dare // Annu. Rev. Mar. Sci. 2012. V. 4. P. 425–448. https://doi.org/10.1146/annurev-marine-120709-142805
- Breitbart M., Bonnain C., Malki K., Sawaya N.A. Phage puppet masters of the marine microbial realm // Nat. Microbiol. 2018. V. 3. P. 754–766. https://doi.org/10.1038/s41564-018-0166-y
- Breitbart M., Felts B., Kelley S. et al. Diversity and population structure of a near-shore marine-sediment viral community // Proc. R. Soc. London. B. 2004. V. 271. P. 565–574. https://doi.org/10.1098/rspb.2003.2628
- Breitbart M., Salamon P., Andresen B. et al. Genomic analysis of uncultured marine viral communities // Proc. Natl. Acad. Sci. U.S.A. 2002. V. 99. P. 14250–14255. https://doi.org/10.1073/pnas.202488399
- Brum J.R., Hurwitz B.L., Schofield O. et al. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics // ISME J. 2016. V. 10. P. 437–449. https://doi.org/10.1038/ismej.2015.125
- Brum J.R., Ignacio-Espinoza J.C., Roux S. et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities // Science. 2015. V. 348. № 6237. Art. ID 1261498. https://doi.org/10.1126/science.1261498
- Bryson S.J., Thurber A.R., Correa A.M.S. et al. A novel sister clade to the enterobacteria microviruses (family Microviridae) identified in methane seep sediments // Environ. Microbiol. 2015. V. 17. P. 3708–3721. https://doi.org/10.1111/1462-2920.12758
- Cai L., Jørgensen B.B., Suttle C.A. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years // ISME J. 2019. V. 13. P. 1857–1864. https://doi.org/10.1038/s41396-019-0397-9
- Campillo-Balderas J.A., Lazcano A., Becerra A. Viral genome size distribution does not correlate with the antiquity of the host lineages // Front. Ecol. Evol. 2015. V. 3. Art. ID 143. https://doi.org/10.3389/fevo.2015.00143
- Chang W.S., Pettersson J.H., Le Lay C. et al. Novel hepatitis D-like agents in vertebrates and invertebrates // Virus Evol. 2019. V. 5. vez021. https://doi.org/ 10.1093/ve/vez021
- Chen R., Mukhopadhyay S., Merits A. et al. ICTV Virus Taxonomy Profile: Togaviridae // J. Gen. Virol. 2018. V. 99. P. 761–762. https://doi.org/10.1099/jgv.0.001072
- Chiang Y.N., Penadés J.R., Chen J. Genetic transduction by phages and chromosomal islands: the new and noncanonical // PLoS Pathog. 2019. V. 15. e1007878. https://doi.org/10.1371/journal.ppat.1007878
- Chinchar V.G., Hick P., Ince I.A. et al. ICTV Virus Taxonomy Profile: Iridoviridae // J. Gen. Virol. 2017. V. 98. P. 890–891. https://doi.org/10.1099/jgv.0.000818
- Claverie J.M., Grzela R., Lartigue A. et al. Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges // J. Invertebr. Pathol. 2009. V. 101. P. 172–180. https://doi.org/10.1016/j.jip.2009.03.011
- Colson P., La Scola B., Levasseur A. et al. Mimivirus: leading the way in the discovery of giant viruses of amoebae // Nat. Rev. Microbiol. 2017. V. 15. P. 243–254. https://doi.org/10.1038/nrmicro.2016.197
- Cotmore S.F., Agbandje-McKenna M., Canuti M. et al. ICTV Virus Taxonomy Profile: Parvoviridae // J. Gen. Virol. 2019. V. 100. P. 367–368. https://doi.org/10.1099/jgv.0.001212
- Coutinho F.H., Silveira C.B., Gregoracci G.B. et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans // Nat. Commun. 2017. V. 8. Art. ID 15955. https://doi.org/10.1038/ncomms15955
- Cram J., Parada A.E., Fuhrman J.A. Dilution reveals how viral lysis and grazing shape microbial communities // Limnol. Oceanogr. 2016. V. 61. P. 889–905. https://doi.org/10.1002/lno.10259
- Dart E., Fuhrman J.A., Ahlgren N. Diverse marine T4-like cyanophage communities are primarily comprised of low-abundance species including species with distinct seasonal, persistent, occasional, or sporadic dynamics // Viruses. 2023. V. 15. Art. 581. https://doi.org/10.3390/v15020581
- Danovaro R., Dell’Anno A., Corinaldesi C. et al. Major viral impact on the functioning of benthic deep-sea ecosystems // Nature. 2008. V. 454. P. 1084–1087. https://doi.org/10.1038/nature07268
- Danovaro R., Dell’Anno A., Corinaldesi C. et al. Virus-mediated archaeal hecatomb in the deep seafloor // Sci. Adv. 2016. V. 2. e1600492. https://doi.org/10.1126/sciadv.1600492
- De Lima J.G.S., Teixeira D.G., Freitas T.T. et al. Evolutionary origin of 2A-like sequences in Totiviridae genomes // Virus Res. 2019. V. 259. P. 1–9. https://doi.org/10.1016/j.virusres.2018.10.011
- Dell’Anno A., Corinaldesi C., Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. E2014–E2E19. https://doi.org/10.1073/pnas.1422234112
- Delmas B., Attoui H., Ghosh S. et al. ICTV Virus Taxonomy Profile: Birnaviridae // J. Gen. Virol. 2019. V. 100. P. 5–6. https://doi.org/10.1099/jgv.0.001185
- DeLong J.P., Van Etten J.L., Al-Ameeli Z. et al. The consumption of viruses returns energy to food chains // Proc. Natl. Acad. Sci. USA. 2023. V. 120. e2215000120. https://doi.org/10.1073/pnas.2215000120
- Deng L., Krauss S., Feichtmayer F. et al. Grazing of heterotrophic flagellates on viruses is driven by feeding behavior // Environ. Microbiol. Rep. 2014. V. 6. P. 325–330. https://doi.org/10.1111/1758-2229.12119
- Deviatkin A.A., Lukashev A.N., Poleshchuk E.M. et al. The phylodynamics of the rabies viruses in the Russian Federation // PLoS One. 2017. V. 12. e0171855. https://doi.org/10.1371/journal.pone.0171855
- Diaz J.M., Plummer S. Production of extracellular reactive oxygen species by phytoplankton: past and future directions // J. Plankton Res. 2018. V. 40. P. 655–666. https://doi.org/10.1093/plankt/fby039
- Dietzgen R.G., Kondo H., Goodin M.M. et al. The family Rhabdoviridae: mono-and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins // Virus Res. 2017. V. 227. P. 158–170. https://doi.org/10.1016/j.virusres.2016.10.010
- Dion M.B., Oechslin F., Moineau S. Phage diversity, genomics and phylogeny // Nat. Rev. Microbiol. 2020. V. 18. P. 125–138. https://doi.org/10.1038/s41579-019-0311-5
- Duda R.L., Teschke C.M. The amazing HK97 fold: versatile results of modest differences // Curr. Opin. Virol. 2019. V. 36. P. 9–16. https://doi.org/10.1016/j.coviro.2019.02.001
- Dunigan D., Fitzgerald L.A., Van Etten J.L. Phycodnaviruses: a peek at genetic diversity // Virus Res. 2006. V. 117. P. 119–132. https://doi.org/10.1016/j.virusres.2006.01.024
- Dyall-Smith M., Palm P., Wanner G. et al. Halobacterium salinarum virus ChaoS9, a novel Halovirus related to PhiH1 and PhiCh1 // Genes (Basel). 2019. V. 10. Art. ID 194. https://doi.org/10.3390/genes10030194
- Edgerton B., Owens L., Giasson B., De Beer S. Description of a small dsRNA virus from freshwater crayfish Cherax quadricarinatus // Dis. Aquat. Org. 1994. V. 18. P. 63–69. https://doi.org/10.3354/dao018063
- Edwards R.A., Rohwer F. Viral metagenomics // Nat. Rev. Microbiol. 2005. V. 3. P. 504–510. https://doi.org/10.1038/nrmicro1163
- Edwards K.F., Steward G.F., Schrisopher C.R. Making sense of virus size and the tradeoffs shaping viral fitness // Ecol. Lett. 2021. V. 24. P. 363–373. https://doi.org/10.1111/ele.13630
- Eich C., Biggs T.E.G., Van de Poll W.H. et al. Ecological importance of viral lysis as a loss factor of phytoplankton in the Amundsen Sea // Microorganisms. 2022. V. 10. Art. ID 1967. https://doi.org/10.3390/microorganisms10101967
- Evans C., Brussaard C.P.D. Regional variation in lytic and lysogenic viral infection in the Southern Ocean and its contribution to biogeochemical cycling // Appl. Environ. Microbiol. 2012. V. 78. P. 6741–6748. https://doi.org/10.1128/AEM.01388-12
- Finke J.F., Winget D.M., Chan A.M., Suttle C.A. Variation in the genetic repertoire of viruses infecting Micromonas pusilla reflects horizontal gene transfer and links to their environmental distribution // Viruses. 2017. V. 9. Art. ID 116. https://doi.org/10.3390/v9050116
- Forterre P., Prangishvili D. The major role of viruses in cellular evolution: facts and hypotheses // Curr. Opin. Virol. 2013. V. 3. P. 558–565. https://doi.org/10.1016/j.coviro.2013.06.013
- Fritsvold C., Mikalsen A.B., Haugland Ø. et al. Characterization of early phases of cardiomyopathy syndrome pathogenesis in Atlantic salmon (Salmo salar L.) through various diagnostic methods // J. Fish Dis. 2022. V. 45. P. 1267–1279. https://doi.org/10.1111/jfd.13659
- Garseth Å.H., Fritsvold C., Opheim M. et al. Piscine reovirus (PRV) in wild Atlantic salmon, Salmo salar L., and sea-trout, Salmo trutta L., in Norway // J. Fish Dis. 2012. V. 36. P. 483–493. https://doi.org/10.1111/j.1365-2761.2012.01450.x
- Gatherer D., Depledge D.P., Hartley C.A. et al. ICTV Virus Taxonomy Profile: Herpesviridae 2021 // J. Gen. Virol. 2021. V. 102. Art. ID 001673. https://doi.org/10.1099/jgv.0.001673
- Gregory A.C., Zayed A.A., Conceição-Neto N. et al. Marine DNA viral macro- and microdiversity from pole to pole // Cell. 2019. V. 177. P. 1109–1123. https://doi.org/10.1016/j.cell.2019.03.040
- Gudenkauf B.M., Eaglesham J.B., Aragundi W., Hewson I. Discovery of urchin-associated densoviruses (family Parvoviridae) in coastal waters of the Big Island, Hawaii // J. Gen. Virol. 2014. V. 95. P. 652–658. https://doi.org/10.1099/vir.0.060780-0
- Guelin A. Bacteriophages and intestinal bacteria in sea fish and the problem of polluted waters // Ann. Inst. Pasteur (Paris). 1952. V. 83. P. 46–56.
- Gulyaeva A., Garmaeva Z., Kurilshiko A. et al. Diversity and ecology of Caudoviricetes phages with genome terminal repeats in fecal metagenomes from four Dutch cohorts // Viruses. 2022. V. 14. Art. ID 2305. https://doi.org/10.3390/v14102305
- Hara S., Terauchi K., Koike I. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy // Appl. Environ. Microbiol. 1991. V. 57. P. 2731–2734. https://doi.org/10.1128/aem.57.9.2731-2734.1991
- Häring M., Vestergaard G., Brügger K. et al. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures // J. Bacteriol. 2005. V. 187. P. 3855–3858. https://doi.org/10.1128/JB.187.11.3855-3858.2005
- Harrison R.L., Herniou E.A., Bézier A. et al. ICTV Virus Taxonomy Profile: Nudiviridae // J. Gen. Virol. 2020. V. 101. P. 3–4. https://doi.org/10.1099/jgv.0.001381
- He T., Jin M., Zhang X. Marine viruses // Virus infection and tumorigenesis / Ed. X. Zhang Singapore: Springer Nature. 2019. P. 25–62. https://doi.org/10.1007/ 978-981-13-6198-2_2
- Hevroni G., Flores-Uribe J., Béj O., Philosof A. Seasonal and diel patterns of abundance and activity of viruses in the Red Sea // Proc. Natl. Acad. Sci. U.S.A. 2020. V. 117. P. 29738–29747. https://doi.org/10.1073/pnas.2010783117
- Hierweger M.M., Koch M.C., Rupp M. et al. Novel Filoviruses, Hantavirus, and Rhabdovirus in freshwater fish, Switzerland, 2017. Emerging Infect. Dis. 2021. V. 27. P. 3082–3091. https://doi.org/10.3201/eid2712.210491
- Hobbs Z., Abedon S.T. Diversity of phage infection types and associated terminology: the problem with “Lytic or lysogenic” // FEMS Microbiol. Lett. 2016. V. 363. fnw047. https://doi.org/10.1093/femsle/fnw047
- Horie M. Identification of a novel filovirus in a common lancehead (Bothrops atrox (Linnaeus, 1758)) // J. Vet. Med. Sci. 2021. V. 83. P. 1485–1488. https://doi.org/10.1292/jvms.21-0285
- Howard-Varona C., Hargreaves K.R., Abedon S.T., Sullivan M.B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages // ISME J. 2017. V. 11. P. 1511–1520. https://doi.org/10.1038/ismej.2017.16
- Huang P., Zhang X., Ame K.H. et al. Genomic and phylogenetic characterization of a bunya-like virus from the freshwater Chinese mitten crab Eriocheir sinensis // Acta Virol. 2019. V. 63. P. 433–438. https://doi.org/10.4149/av_2019_410
- Hughes H.R., Adkins S., Alkhovskiy S. et al. ICTV Virus Taxonomy Profile: Peribunyaviridae // J. Gen. Virol. 2020. V. 101. P. 1–2. https://doi.org/10.1099/jgv.0.001365
- Hurwitz B.L., Brum J.R., Sullivan M.B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean virome // ISME J. 2015. V. 9. P. 472−484. https://doi.org/10.1038/ismej.2014.143
- Iranzo J., Krupovic M., Koonin E.V. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing // MBio. 2016. V. 7. e00978-16. https://doi.org/10.1128/mBio.00978-16
- Jansen M.D., Jensen B.B., McLoughlin M.F. et al. The epidemiology of pancreas disease in salmonid aquaculture: a summary of the current state of knowledge // J. Fish Dis. 2017. V. 40. P. 141–155. https://doi.org/10.1111/jfd.12478
- Jin M., Cai L., Ma R. et al. Prevalence of temperate viruses in deep South China Sea and western Pacific Ocean // Deep-Sea Res. Pt. I. 2020. V. 166. Art. ID 103403. https://doi.org/10.1016/j.dsr.2020.103403
- Jover L.F., Effler T.C., Buchan A. et al. The elemental composition of virus particles: implications for marine biogeochemical cycles // Nat. Rev. Microbiol. 2014. V. 12. P. 519–528. https://doi.org/10.1038/nrmicro3289
- Kazlauskas D., Varsani A., Koonin E.V., Krupovic M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids // Nat. Commun. 2019. V. 10. Art. ID 3425. https://doi.org/10.1038/s41467-019-11433-0
- Kibenge M.J.T., Iwamoto T., Wang Y. et al. Whole-genome analysis of piscine reovirus (PRV) shows PRV represents a new genus in family Reoviridae and its genome segment S1 sequences group it into two separate sub-genotypes // Virol. J. 2013. V. 10. Art. ID 230. https://doi.org/10.1186/1743-422X-10-230
- Kraberger S., Austin C., Farkas K. et al. Discovery of novel fish papillomaviruses: from the Antarctic to the commercial fish market // Virology. 2022. V. 565. P. 65–72. https://doi.org/10.1016/j.virol.2021.10.007
- Koonin E.V., Dolja V.V., Krupovic M. et al. Global organization and proposed megataxonomy of the virus world // Microbiol. Mol. Biol. Rev. 2020. V. 84. e00061-19. https://doi.org/10.1128/ MMBR.00061-19
- Koskella B., Meaden S. Understanding bacteriophage specificity in natural microbial communities // Viruses. 2013. V. 5. P. 806–823. https://doi.org/10.3390/v5030806
- Krupovic M., Dolja V.V., Koonin E.V. The LUCA and its complex virome // Nat. Rev. Microbiol. 2020. V. 18. P. 661–670. https://doi.org/10.1038/s41579-020-0408-x
- Krupovic M., Kuhn J.S., Wang F. et al. Adnaviria: a new realm for archaeal filamentous viruses with linear a-form double-stranded DNA genomes // J. Virol. 2021. V. 95. e0067321. https://doi.org/10.1128/JVI.00673-21
- Krupovic M., Makarova K.S., Wolf Y.I. et al. Integrated mobile genetic elements in Thaumarchaeota // Environ. Microbiol. 2019. V. 21. P. 2056–2078. https://doi.org/10.1111/1462-2920.14564
- Krupovic M., Spang A., Gribaldo S. et al. A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea // Biochem. Soc. Trans. 2011. V. 39. P. 82–88. https://doi.org/10.1042/BST0390082
- Krylova N.V., Silchenko A.S., Pott A.B. et al. In vitro anti-Orthohantavirus activity of the high-and low-molecular-weight fractions of fucoidan from the brown alga Fucus evanescens // Mar. Drugs. 2021. V. 19. Art. ID 577. https://doi.org/10.3390/md19100577
- Lang A.S., Vlok M., Culley A.I. et al. ICTV Virus Taxonomy Profile: Marnaviridae 2021 // J. Gen. Virol. 2021. V. 102. Art. ID 001633. https://doi.org/10.1099/jgv.0.001633
- Lara E., Vaqué D., Sà E.L. et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean // Sci. Adv. 2017. V. 3. e1602565. https://doi.org/10.1126/sciadv.1602565
- Lee B.D., Koonin E.V. Viroids and viroid-like circular RNAs: Do they descend from primordial replicators? // Life. 2022. V. 12. Art. ID 103. https://doi.org/10.3390/life12010103
- Lefkowitz E.J., Dempsey D.M., Hendrickson R.C. et al. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV) // Nucleic Acids Res. 2018. V. 46. P. D708–D717. https://doi.org/10.1093/nar/gkx932
- Liu Y., Demina T.A., Roux S. et al. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes // PLoS Biol. 2021. V. 19. e3001442. https://doi.org/10.1371/journal.pbio.3001442
- López-Sanmartín M., López-Fernández J.R., Cunha M.E. et al. Ostreid herpesvirus in wild oysters from the Huelva coast (SW Spain) // Dis. Aquat. Org. 2016. V. 120. P. 231–240. https://doi.org/10.3354/dao03031
- Lvov D.K., Shchelkanov M.Yu., Alkhovsky S.V., Deryabin P.G. Zoonotic viruses of Northern Eurasia: Taxonomy and ecology. Academic Press. 2015. 452 p.
- Lycke E., Magnusson S., Lund E. Studies on the nature of the virus inactivating capacity of sea water // Arch. Gesamte Virusforsch. 1965. V. 17. P. 409–413. https://doi.org/10.1007/BF01241195
- Magnusson S., Hedström C.E., Lycke E. The virus inactivating capacity of sea water // Acta Pathol. Microbiol. Scand. 1966. V. 66. P. 551–559. https://doi.org/10.1111/apm.1966.66.4.551
- Malathi V.G., Devi P.R. ssDNA viruses: key players in global virome // VirusDis. 2019. V. 30. P. 3–12. https://doi.org/10.1007/s13337-019-00519-4
- Maness H.T., Nollens H.H., Jensen E.D. et al. Phylogenetic analysis of marine mammal herpesviruses // Vet. Microbiol. 2011. V. 149. P. 23–29. https://doi.org/ 10.1016/j.vetmic.2010.09.035
- Mäntynen S., Laanto E., Oksanen H.M. et al. Black box of phage-bacterium interactions: exploring alternative phage infection strategies // Open Biol. 2021. V. 11. Art. ID 210188. https://doi.org/10.1098/rsob.210188
- Marie D., Brussaard C.P.D., Thyrhaug R. et al. Enumeration of marine viruses in culture and natural samples by flow cytometry // Appl. Environ. Microbiol. 1999. V. 65. P. 45–52. https://doi.org/10.1128/AEM.65.1.45-52.1999
- Martinez-Hernandez F., Fornas O., Martinez-Garcia M. Into the dark: exploring the deep ocean with single-virus genomics // Viruses. 2022. V. 14. Art. 1589. https://doi.org/10.3390/v14071589
- Marty G.D., Morrison D.B., Bidulka J. et al. Piscine reovirus in wild and farmed salmonids in British Columbia, Canada: 1974–2013 // J. Fish Dis. 2015. V. 38. P. 713–728. https://doi.org/10.1111/jfd.12285
- Masood N., Malik S.S., Raja M.N. et al. Unraveling the epidemiology, geographical distribution, and genomic evolution of potentially lethal coronaviruses (SARS, MERS, and SARS CoV-2) // Front. Cell. Infect. Microbiol. 2020. V. 10. Art. 499. https://doi.org/10.3389/fcimb.2020.00499
- Matthews R.E.F. The history of viral taxonomy // A critical appraisal of viral taxonomy / Ed. R.E.F. Matthews. Boca Raton, Florida: CRC Press. 1983. P. 1–35.
- Matthijnssens J., Attoui H., Bányai K. et al. ICTV Virus Taxonomy Profile: Sedoreoviridae 2022 // J. Gen. Virol. 2022a. V. 103. Art. ID 001782. https://doi.org/10.1099/jgv.0.001782
- Matthijnssens J., Attoui H., Bányai K. et al. ICTV Virus Taxonomy Profile: Spinareoviridae 2022 // J. Gen. Virol. 2022b. V. 103. Art. ID 001781. https://doi.org/10.1099/jgv.0.001781
- McKeown D.A., Stevens K., Peters A.F. et al. Phaeoviruses discovered in kelp (Laminariales) // ISME J. 2017. V. 11. P. 2869–2873. https://doi.org/10.1038/ismej.2017.130
- McLoughlin M.F., Graham D.A. Alphavirus infections in salmonids. A review // J. Fish Dis. 2007. V. 30. P. 511–531. https://doi.org/10.1111/j.1365-2761.2007.00848.x
- Middelboe M., Brussaard C.P.D. Marine viruses: key players in marine ecosystems // Viruses. 2017. V. 9. Art. ID 302. https://doi.org/10.3390/v9100302
- Miranda J.A., Culley A.I., Schvarcz C.R., Steward G.F. RNA viruses as major contributors to Antarctic virioplankton // Environ. Microbiol. 2016. V. 18. P. 3714–3727. https://doi.org/10.1111/1462-2920.13291
- Mizuno C.M., Prajapati B., Lucas-Staat S. et al. Novel haloarchaeal viruses from Lake Retba infecting Haloferax and Halorubrum species // Environ. Microbiol. 2019. V. 21. P. 2129–2147. https://doi.org/10.1111/1462-2920.14604
- Moelling K., Broecker F. Viruses and evolution – viruses first? A personal perspective // Front. Microbiol. 2019. V. 10. Art. ID 523. https://doi.org/10.3389/fmicb.2019.00523
- Montanie H., Bossy J.-P., Bonami J.-R. Morphological and genomic characterization of two reoviruses (P and W2) pathogenic for marine crustaceans; do they constitute a novel genus of the Reoviridae family? // J. Gen. Virol. 1993. V. 74. P. 1555–1561. https://doi.org/10.1099/0022-1317-74-8-1555
- Munson-McGee J.H., Snyder J.C., Young M.J. Archaeal viruses from high-temperature environments // Genes (Basel). 2018. V. 9. Art. ID 128. https://doi.org/10.3390/genes9030128
- Mutoloki S., Jøssund T.B., Ritchie G. et al. Infectious pancreatic necrosis virus causing clinical and subclinical infections in Atlantic salmon have different genetic fingerprints // Front. Microbiol. 2016. V. 7. Art. ID 1393. https://doi.org/10.3389/fmicb.2016.01393
- Noda T. [Orthomyxoviruses // Uirusu. 2012. V. 62. P. 219–228. (На яп. яз.) https://doi.org/10.2222/jsv.62.219
- Notaro A., Poirot O., Garcin E.D. et al. Giant viruses of the Megavirinae subfamily possess biosynthetic pathways to produce rare bacterial-like sugars in a clade-specific manner // Microlife. 2022. V. 3. P. 1–23. https://doi.org/10.1093/femsml/uqac002
- Palacios G., Løvoll M., Tengs T. et al. Heart and skeletal muscle inflammation of farmed salmon is associated with infection with a novel reovirus // PLoS One. 2010. V. 5. e11487. https://doi.org/10.1371/journal.pone.0011487
- Payet J.P., Suttle C.A. To kill or not to kill: the balance between lytic and lysogenic viral infections is driven by trophic status // Limnol. Oceanogr. 2013. V. 58. P. 465–474. https://doi.org/10.4319/lo.2013.58.2.0465
- Paul J.H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? // ISME J. 2008. V. 2. P. 579–589. https://doi.org/10.1038/ismej.2008.35
- Peretti A., FitzGerald P.C., Bliskovsky V. et al. Genome sequence of a fish-associated polyomavirus, black sea bass (Centropristis striata) Polyomavirus 1 // Genome Announce. 2015. V. 3. e01476-14. https://doi.org/10.1128/genomeA.01476-14.
- Philosof A., Yutin N., Flores-Uribe J. et al. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota // Curr. Biol. 2017. V. 27. P. 1362–1368. https://doi.org/10.1016/j.cub.2017.03.052
- Plissier M. Inactivation in sea water and drinking water of certain enteroviruses // Arch. Gesamte Virusforsch. 1963. V. 13. P. 76–81.
- Poorvin L., Rinta-Kanto J.M., Hutchins D.A., Wilhelm S.W. Viral release of iron and its bioavailability to marine plankton // Limnol. Oceanogr. 2004. V. 49. P. 1734–1741. https://doi.org/10.4319/lo.2004.49.5.1734
- Prado-Alvarez M., García-Fernandez P., Faury N. et al. First detection of OsHV-1 in the cephalopod Octopus vulgaris. Is the octopus a dead-end for OsHV-1? // J. Invertebr. Pathol. 2021. V. 183. Art. ID 107553. https://doi.org/10.1016/j.jip.2021.107553
- Prangishvili D., Bamford D.H., Forterre P. et al. The enigmatic archaeal virosphere // Nat. Rev. Microbiol. 2017. V. 15. P. 724–739. https://doi.org/10.1038/nrmicro.2017.125
- Record N.R., Talmy D., Vage S. Quantifying tradeoffs for marine viruses // Front. Mar. Sci. 2016. V. 3. Art. 251. https://doi.org/10.3389/fmars. 2016.00251
- Ren W., Chen H., Renault T. et al. Complete genome sequence of acute viral necrosis virus associated with massive mortality outbreaks in the Chinese scallop, Chlamys farrer // Virol. J. 2013. V. 10. Art. 110. https://doi.org/10.1186/1743-422X-10-110
- Renault T., Novoa B. Viruses infecting bivalve mollusks // Aquat. Living Resour. 2004. V. 17. P. 397–409. https://doi.org/10.1051/alr:2004049
- Rima B., Balkema-Buschmann A., Dundon W.G. et al. ICTV Virus Taxonomy Profile: Paramyxoviridae // J. Gen. Virol. 2019. V. 100. P. 1593–1594. https://doi.org/10.1099/jgv.0.001328
- Rodger H.D., McCleary S.J., Ruane N.M. Clinical cardiomyopathy syndrome in Atlantic salmon, Salmo salar L. // J. Fish Dis. 2014. V. 37. P. 935–939. https://doi.org/10.1111/jfd.12186
- Rohwer F., Thurber R.V. Viruses manipulate the marine environment // Nature. 2009. V. 459. P. 207–212. https://doi.org/10.1038/nature08060
- Roux S., Brum J.R., Dutilh B.E. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses // Nature. 2016. V. 537. P. 689–693. https://doi.org/10.1038/nature19366
- Safonova M.V., Shchelkanov M.Yu., Khafizov K.F. et al. Sequencing and genetic characterization of two strains Paramushir virus obtained from the Tyuleniy Island in the Okhotsk Sea (2015) // Ticks Tick Borne Dis. 2019. V. 10. P. 269–279. https://doi.org/10.1016/j.ttbdis.2018.11.004
- Senčilo A., Jacobs-Sera D., Russell D.A. et al. Snapshot of haloarchaeal tailed virus genomes // RNA Biol. 2013. V. 10. P. 803–816. https://doi.org/10.4161/rna.24045
- Shchelkanov M.Yu., Yudin A.N., Antonov A.V. et al. Variability analysis of HIV-1 gp120 V3 region: II. Hierarchy of taxons // J. Biomol. Struct. Dyn. 1997. V. 15. P. 231–241.
- Shi M., Lin X.D., Chen X. et al. The evolutionary history of vertebrate RNA viruses // Nature. 2018. V. 556. P. 197–202. https://doi.org/10.1038/s41586-018-0012-7
- Shope R.E. The swine lungworm as a reservoir and intermediate host for swine influenza virus. IV. The demonstration of masked swine influenza virus in lungworm larvae and swine under natural conditions // J. Exp. Med. 1943. V. 77. P. 127–138.
- Siddell S.G., Smith D.B., Adriaenssens E. et al. Virus taxonomy and the role of the International Committee on Taxonomy of Viruses (ICTV) // J. Gen. Virol. 2023. V. 104. Art. ID 01840. https://doi.org/10.1099/jgv.0.001840
- Simmonds P., Aiewsakun P. Virus classifcation – where do you draw the line? // Arch. Virol. 2018. V. 163. P. 2037–2046. https://doi.org/10.1007/s00705-018-3938-z
- Spencer R. A marine bacteriophage // Nature. 1955. V. 175. P. 690–691. https://doi.org/10.1038/175690a0
- Steward G.F., Culley A.I., Mueller J.A. et al. Are we missing half of the viruses in the ocean? // ISME J. 2013. V. 7. P. 672–679. https://doi.org/10.1038/ismej.2012.121
- Suttle C.A., Chan A.M., Cottrell M.T. Infection of phytoplankton by viruses and reduction of primary productivity // Nature. 1990. V. 347. P. 467–469. https://doi.org/10.1038/347467a0
- Suttle C.A. Marine viruses – major players in the global ecosystem // Nat. Rev. Microbiol. 2007. V. 5. P. 801–812. https://doi.org/10.1038/nrmicro1750
- Sutton T.D., Hill C. Gut bacteriophage: current understanding and challenges // Front. Endocrinol. 2019. V. 10. Art. 784. https://doi.org/10.3389/fendo.2019.00784
- Thingstad T.F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems // Limnol. Oceanogr. 2000. V. 45. P. 1320–1328.
- Thompson L., Zeng Q., Kelly L. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. E757–E764. https://doi.org/10.1073/pnas.1102164108
- Turner D., Kropinski A.M., Adriaenssens E.M. A roadmap for genome-based phage taxonomy // Viruses. 2021. V. 13. Art. ID 506. https://doi.org/10.3390/v13030506
- Valles S.M., Chen Y., Firth A.E. et al. ICTV Virus Taxonomy Profile: Dicistroviridae // J. Gen. Virol. 2017. V. 98. P. 355–356. https://doi.org/10.1099/jgv.0.000756
- Van Doorslaer K., Chen Z., Bernard H.-U. et al. Virus Taxonomy Profile: Papillomaviridae // J. Gen. Virol. 2018. V. 99. P. 989–990. https://doi.org/10.1099/jgv.0.001105
- Van Etten J.L., Graves M.V., Müller D.G. et al. Phycodnaviridae − large DNA algal viruses // Arch. Virol. 2002. V. 147. P. 1479–1516. https://doi.org/10.1007/s00705-002-0822-6
- Van Regenmortel M.H.V. Classes, taxa and categories in a hierarchical virus classification: a review of current debates of definitions and names of virus species // Bionomina. 2016. V. 10. P. 1–21. https://doi.org/10.11646/bionomina.10.1.1
- Vincent A., La Scola B., Papazian L. Advances in Mimivirus pathogenicity // Intervirology. 2010. V. 53. P. 304–309. https://doi.org/10.1159/000312915
- Vinjé J., Estes M.K., Esteves P. et al. ICTV Virus Taxonomy Profile: Caliciviridae // J. Gen. Virol. 2019. V. 100. P. 1469–1470. https://doi.org/10.1099/jgv.0.001332
- Walker P.J., Siddell S.G., Lefkowitz E.J. et al. Changes to virus taxonomy and the International Code of Virus Classifcation and Nomenclature ratifed by the International Committee on Taxonomy of Viruses (2019) // Arch. Virol. 2019. V. 164. P. 2417–2429. https://doi.org/10.1007/s00705-019-04306-w
- Walker P.J., Siddell S.G., Lefkowitz E.J. et al. Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020) // Arch. Virol. 2020. V. 165. P. 2737–2748. https://doi.org/10.1007/s00705-020-04752-x
- Walker P.J., Siddell S.G., Lefkowitz E.J. et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022) // Arch. Virol. 2022. V. 167. P. 2429–2440. https://doi.org/10.1007/s00705-022-05516-5
- Waltzek T.B., Subramaniam K., Leis E. et al. Characterization of a peribunyavirus isolated from largemouth bass (Micropterus salmoides) // Virus Res. 2019. V. 273. Art. ID 197761. https://doi.org/10.1016/j.virusres.2019.197761
- Wang H.-C., Hirono I., Maningas M.B.B. et al. ICTV Virus Taxonomy Profile: Nimaviridae // J. Gen. Virol. 2019. V. 100. P. 1053–1054. https://doi.org/10.1099/jgv.0.001248
- Weinbauer M.G., Bonilla-Findji O., Chan A.M. et al. Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria // J. Plankton Res. 2011. V. 33. P. 465–476. https://doi.org/10.1093/plankt/fbr041
- Weinbauer M.G., Brettar I., Höfle M.G. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters // Limnol. Oceanogr. 2003. V. 48. P. 1457–1465. https://doi.org/10.4319/lo.2003.48.4.1457
- Weitz J.S., Stock C.A., Wilhelm S.W. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes // ISME J. 2015. V. 9. P. 1352–1364. https://doi.org/10.1038/ismej.2014.220
- Weitz J.S., Wilhelm S. Ocean viruses and their effects on microbial communities and biogeochemical cycles // F1000 Biol. Rep. 2012. V. 4. Art. ID 17. https://doi.org/10.3410/B4-17
- Wickner R.B., Ghabrial S.A., Niber M.L. et al. Family Totiviridae // Virus taxonomy: Classification and nomenclature of viruses: Ninth report of the International Committee on Taxonomy of Viruses. Tokyo: Elsevier Academic Press. 2011. P. 639–650.
- Wiik-Nielsen C.R., Løvoll M., Sandlund N. et al. First detection of piscine reovirus (PRV) in marine fish species // Dis. Aquat. Org. 2012. V. 97. P. 255–258. https://doi.org/10.3354/dao02425
- Williams T., Bergoin M., van Oers M.M. Diversity of large DNA viruses of invertebrates // J. Invertebr. Pathol. 2016. V. 147. P. 4–22. https://doi.org/10.1016/j.jip.2016.08.001
- Williamson K.E., Fuhrmann J.J., Wommack K.E., Radosevich M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory // Annu. Rev. Virol. 2017. V. 4. P. 201–219. https://doi.org/10.1146/annurev-virology-101416-041639
- Williamson S.J., Houchin L.A., McDaniel L., Paul J.H. Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida // Appl. Environ. Microbiol. 2002. V. 68. P. 4307–4314. https://doi.org/10.1128/AEM.68.9.4307-4314.2002
- Wommack K.E., Ravel J., Hill R.T. et al. Population dynamics of Chesapeake Bay virioplankton: total-community analysis by pulsed-field gel electrophoresis // Appl. Environ. Microbiol. 1999. V. 65. P. 231–240. https://doi.org/10.1128/AEM.65.1.231-240.1999
- Woo P.C.Y., de Groot R.J., Haagmans B. et al. ICTV Virus Taxonomy Profile: Coronaviridae 2023 // J. Gen. Virol. 2023. V. 104. https://doi.org/10.1099/jgv.0.001843
- Woo A.C., Gaia M., Guglielmini J. et al. Phylogeny of the Varidnaviria morphogenesis module: congruence and incongruence with the tree of life and viral taxonomy // Front. Microbiol. 2021. V. 12. Art. ID 704052. https://doi.org/10.3389/fmicb.2021.704052
- Woo P.C.Y., Lau S.K.P., Lam C.S.F. et al. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus // J. Virol. 2014. V. 88. P. 1318–1331. https://doi.org/10.1128/JVI.02351-13
- Xue Q., Liu H., Zhu Z. et al. African swine fever virus regulates host energy and amino acid metabolism to promote viral replication // J. Virol. 2022. V. 96. e0191921. https://doi.org/10.1128/JVI.01919-21
- Zell R., Delwart E., Gorbalenya A.E. et al. ICTV Virus Taxonomy Profile: Picornaviridae // J. Gen. Virol. 2017. V. 98. P. 2421–2422. https://doi.org/10.1099/jgv.0.000911
- Zerbini F.M., Siddell S.G., Mushegian A.R. et al. Differentiating between viruses and virus species by writing their names correctly // Arch. Virol. 2022. V. 167. P. 1231–1234. https://doi.org/10.1007/s00705-021- 05323-4
- Zhang R., Li Y., Yan W., et al. Viral control of biomass and diversity of bacterioplankton in the deep sea // Commun. Biol. 2020. V. 3. Art. 256. https://doi.org/10.1038/s42003-020-0974-5
- Zhang Z., Wu Z., Liu H. et al. Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus // Front. Microbiol. 2023. V. 14. Art. ID 1164101. https://doi.org/10.3389/fmicb.2023.1164101
- Zhang C.L., Xie W., Martin-Cuadrado A.-B., Rodriguez-Valera F. Marine Group II Archaea, potentially important players in the global ocean carbon cycle // Front. Microbiol. 2015. V. 6. Art. 1108. https://doi.org/10.3389/fmicb.2015.01108
- Zhao M., Xu L., Bowers H., Schott E.J. Characterization of two novel toti-like viruses co-infecting the Atlantic blue crab, Callinectes sapidus, in its northern range of the United States // Front. Microbiol. 2022. V. 13. Art. ID 855750. https://doi.org/10.3389/fmicb.2022.855750
- Zhu Y., Shang J., Peng C., Sun Y. Phage family classification under Caudoviricetes: a review of current tools using the latest ICTV classification framework // Front. Microbiol. 2022. V. 13. Art. ID 1032186. https://doi.org/10.3389/fmicb.2022.1032186
- Zimmerman A.E., Howard-Varona C., Needham D.M. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems // Nat. Rev. Microbiol. 2020. V. 18. P. 21–34. https://doi.org/10.1038/s41579-019-0270-x
Supplementary files
