Viruses of the Ocean: On the Shores of the Aqua Incognita. Horizons of the Taxonomic Diversity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In recent years, marine viruses have evolved into a distinct branch of virology, yet they still represent a sort of “dark matter”, and their role and significance in the evolution and functioning of Earth's biosphere remain unclear. The widespread implementation of the primerless sequencing methods in routine laboratory practice has streamlined the development of marine virology from initial observations of virus-like particles in seawater, once deemed exotic, to comprehensive generalizations that reshape our understanding of global problems in the World Ocean. They include the continuous depletion of biological resources and diversity, marine pollution, and global climate change. Nevertheless, in terms of virology, the World Ocean remains a true aqua incognita, and marine virology, as a subset of general virology, and marine biology are just at the initial stages of their development, standing on the cusp of new discoveries. Those discoveries have the potential to reveal fundamental processes in the origin and evolution of life on Earth, accelerate the development of novel technologies, and even foster innovative approaches to reshaping the noosphere. The aim of this review is to draw scientific attention to the numerous problematic aspects of viruses in the World Ocean. It covers the main topics such as the current taxonomy of marine viruses, their role in marine ecosystems, the presence of viruses in marine species and related diseases, and the role of marine viruses in the context of global climate change, focusing on unexplored area and outlining directions for future research studies.

Full Text

Restricted Access

About the authors

Yu. S. Khotimchenko

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University

Author for correspondence.
Email: yukhotimchenko@mail.ru
ORCID iD: 0000-0002-6979-1934
Russian Federation, Vladivostok, 690041; Vladivostok, 690922

M. Yu. Shchelkanov

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University; Somov Research Institute of Epidemiology and Microbiology, Rospotrebnadzor

Email: yukhotimchenko@mail.ru
ORCID iD: 0000-0001-8610-7623
Russian Federation, Vladivostok, 690041; Vladivostok, 690922; Vladivostok, 690087

References

  1. Аристова В.А., Колобухина Л.В., Щелканов М.Ю., Львов Д.К. Экология вируса Крымской-Конго геморрагической лихорадки и особенности клиники на территории России и сопредельных стран // Вопр. вирусологии. 2001. Т. 46. № 4. С. 7–15.
  2. Беседнова Н.Н., Андрюков Б.Г., Запорожец Т.С. и др. Оболочечные вирусы – патогенетическая мишень лектинов цианобактерий // Антибиотики и химиотерапия. 2022. Т. 67. № 5−6. С. 39–60.
  3. Какарека Н.Н., Козловская З.Н., Волков Ю.Г. и др. Неповирусы (Picornavirales, Secoviridae, Nepovirus) на юге Дальнего Востока: результаты многолетнего мониторинга // Юг России: экология, развитие. 2017. № 4. С. 105–119.
  4. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Гидродинамика. М.: Наука. 1988. Т. 10. 736 с.
  5. Львов Д.К., Аристова В.А., Бутенко А.М. и др. Вирусы серогруппы Калифорнийского энцефалита и вызываемые ими заболевания: клинико-эпидемиологическая характеристика, географическое распространение, методы вирусологической и серологической диагностики. М.: РАМН. 2003. 41 с.
  6. Львов Д.К., Ямникова С.С., Федякина И.Т. и др. Экология и эволюция вирусов гриппа в России (1979−2002 гг.) // Вопр. вирусологии. 2004. Т. 49. № 3. С. 17–24.
  7. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. Ред. Д.К. Львов. М.: МИА. 2013. 1200 с.
  8. Щелканов М.Ю. Этиология COVID-19. В кн.: COVID-19: от этиологии до вакцинопрофилактики. М.: ГЭОТАР-Медиа. 2023. С. 11–53.
  9. Щелканов М.Ю., Дунаева М.Н., Москвина Т.В. и др. Каталог вирусов рукокрылых (2020) // Юг России: экология, развитие. 2020а. Т. 15. № 3. С. 6–30.
  10. Щелканов М.Ю., Еремин В.Ф., Сахурия И.Б. и др. Дегидрогеназная активность инфицированных клеток и биологические свойства различных вариантов ВИЧ-1 // Биохимия. 1999. Т. 64. № 4. С. 513–519.
  11. Щелканов М.Ю., Какарека Н.Н., Волков Ю.Г., Толкач В.Ф. Становление фитовирусологии на Дальнем Востоке в контексте развития отечественной вирусологии. Владивосток: Изд-во ДВФУ. 2022. 142 с.
  12. Щелканов М.Ю., Колобухина Л.В., Бургасова О.А. и др. COVID-19: этиология, клиника, лечение // Инфекция и иммунитет. 2020б. Т. 10. № 3. С. 421–445.
  13. Щелканов М.Ю., Леонова Г.Н., Галкина И.В., Андрюков Б.Г. У истоков концепции природной очаговости // Здоровье населения и среда обитания. 2021а. № 5. С. 16–25.
  14. Щелканов М.Ю., Львов Д.К. Генотипическая структура рода Influenza A virus // Вестн. РАМН. 2011. № 5. С. 19–23.
  15. Щелканов М.Ю., Львов Д.К. Новый субтип вируса гриппа А от летучих мышей и новые задачи эколого-вирусологического мониторинга // Вопр. вирусологии. 2012. Приложение 1. С. 159–168.
  16. Щелканов М.Ю., Попова А.Ю., Дедков В.Г. и др. История изучения и современная классификация коронавирусов (Nidovirales: Coronaviridae) // Инфекция и иммунитет. 2020в. Т. 10. № 2. С. 221–246.
  17. Щелканов М.Ю., Суняйкин А.Б., Коваленко Т.С., Львов Д.К. Современная таксономия пикорнавирусов (Picornavirales, Picornaviridae) // Инфекционные болезни: новости, мнения, обучение. 2015. № 3. С. 53–64.
  18. Щелканов М.Ю., Табакаева Т.В., Любченко Е.Н. и др. Рукокрылые: общая характеристика отряда. Владивосток: Изд-во ДВФУ. 2021б. 130 с.
  19. Щелканов М.Ю., Федякина И.Т., Прошина Е.С. и др. Таксономическая структура Orthomyxoviridae: современное состояние и ближайшие перспективы // Вестн. РАМН. 2011. № 5. С. 12–19.
  20. Щелканов М.Ю., Шульгина М.А., Степаньков А.П. и др. Инфекционная анемия лососевых // Юг России: экология, развитие. 2017. Т. 12. № 2. С. 120–134.
  21. Abergel C., Claverie J.-M. Giant viruses // Curr. Biol. 2020. V. 30. P. R1108–R1110.
  22. Adams M.J., Lefkowitz E.J., King A.M.Q. et al. 50 years of the International Committee on Taxonomy of Viruses: progress and prospects // Arch. Virol. 2017. V. 162. P. 1441–1446.
  23. Adriaenssens E.M. Phage diversity in the human gut microbiome: a taxonomist’s perspective // mSystems. 2021. V. 6. e0079921. https://doi.org/10.1128/mSystems.00799-21
  24. Ahlers L.R., Bastos R.G., Hiroyasu A., Goodman A.G. Invertebrate iridescent virus 6, a DNA virus, stimulates a mammalian innate immune response through RIG-I- like receptors // PLoS One. 2016. V. 11. e0166088. https://doi.org/10.1371/journal.pone.0166088
  25. Ahlgren N.A., Fuchsman C.A., Rocap G., Fuhrman J.A. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes // ISME J. 2019. V. 13. P. 618–631. https://doi.org/10.1038/s41396-018-0289-4
  26. Ambalavanan L., Iehata S., Fletcher R. et al. A review of marine viruses in coral ecosystem // J. Mar. Sci. Eng. 2021. V. 9. № 7. P. 711. https://doi.org/10.3390/jmse9070711
  27. Anthony S., Epstein J.H., Murray K.A. et al. A strategy to estimate unknown viral diversity in mammals // MBio. 2013. V. 4. P. 1–15. https://doi.org/10.1128/mBio.00598-13
  28. Arnold B.J., Huang I-T., Hanage W.P. Horizontal gene transfer and adaptive evolution in bacteria // Nat. Rev. Microbiol. 2022. V. 20. P. 206–218.
  29. Arnold H.P., Zillig W., Ziese U. et al. A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus // Virology. 2000. V. 267. P. 252–266. https://doi.org/10.1038/s41579-021-00650-4
  30. Bagga S., Bouchard M.J. Cell cycle regulation during viral infection // Cell cycle control: Mechanisms and protocol. Methods Mol. Biol. Springer. 2014. V. 1170. P. 165–227. https://doi.org/10.1007/978-1-4939-0888-2_10
  31. Baltimore D. Expression of animal virus genomes // Bacteriol. Rev. 1971. V. 35. P. 235–241. https://doi.org/10.1128/br.35.3.235-241.1971
  32. Bar-On Y.M., Milo R. The biomass composition of the oceans: a blueprint of our blue planet // Cell. 2019. V. 179. P. 1451–1454. https://doi.org/10.1016/j.cell.2019.11.018
  33. Baquero D.P., Liu Y., Wang F. et al. Structure and assembly of archaeal viruses // Adv. Virus Res. 2020. V. 108. P. 127–164. https://doi.org/10.1016/bs.aivir.2020.09.004
  34. Bergh Ø., Boutrup T.S., Johansen R. et al. Viral haemorrhagic septicemia virus (VHSV) isolated from Atlantic herring, Clupea harengus, causes mortality in bath challenge on juvenile herring // Viruses. 2023. V. 15. Art. ID 152. https://doi.org/10.3390/v15010152
  35. Besednova N.N., Andryukov B.G., Zaporozhets T.S. et al. Antiviral effects of polyphenols from marine algae // Biomedicines. 2021. V. 9. P. 1–23. https://doi.org/10.3390/biomedicines9020200
  36. Boras J.A., Sala M.M., Vázquez-Domínguez E. et al. Annual changes of bacterial mortality due to viruses and protists in an oligotrophic coastal environment (NW Mediterranean) // Environ. Microbiol. 2009. V. 11. P. 1181–1193. https://doi.org/10.1111/j.1462-2920.2008.01849.x
  37. Børsheim K.Y., Bratbak G., Heldal M. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy // Appl. Environ. Microbiol. 1990. V. 56. P. 352−356. https://doi.org/10.1128/aem.56.2.352-356.1990
  38. Breitbart M. Marine viruses: truth or dare // Annu. Rev. Mar. Sci. 2012. V. 4. P. 425–448. https://doi.org/10.1146/annurev-marine-120709-142805
  39. Breitbart M., Bonnain C., Malki K., Sawaya N.A. Phage puppet masters of the marine microbial realm // Nat. Microbiol. 2018. V. 3. P. 754–766. https://doi.org/10.1038/s41564-018-0166-y
  40. Breitbart M., Felts B., Kelley S. et al. Diversity and population structure of a near-shore marine-sediment viral community // Proc. R. Soc. London. B. 2004. V. 271. P. 565–574. https://doi.org/10.1098/rspb.2003.2628
  41. Breitbart M., Salamon P., Andresen B. et al. Genomic analysis of uncultured marine viral communities // Proc. Natl. Acad. Sci. U.S.A. 2002. V. 99. P. 14250–14255. https://doi.org/10.1073/pnas.202488399
  42. Brum J.R., Hurwitz B.L., Schofield O. et al. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics // ISME J. 2016. V. 10. P. 437–449. https://doi.org/10.1038/ismej.2015.125
  43. Brum J.R., Ignacio-Espinoza J.C., Roux S. et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities // Science. 2015. V. 348. № 6237. Art. ID 1261498. https://doi.org/10.1126/science.1261498
  44. Bryson S.J., Thurber A.R., Correa A.M.S. et al. A novel sister clade to the enterobacteria microviruses (family Microviridae) identified in methane seep sediments // Environ. Microbiol. 2015. V. 17. P. 3708–3721. https://doi.org/10.1111/1462-2920.12758
  45. Cai L., Jørgensen B.B., Suttle C.A. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years // ISME J. 2019. V. 13. P. 1857–1864. https://doi.org/10.1038/s41396-019-0397-9
  46. Campillo-Balderas J.A., Lazcano A., Becerra A. Viral genome size distribution does not correlate with the antiquity of the host lineages // Front. Ecol. Evol. 2015. V. 3. Art. ID 143. https://doi.org/10.3389/fevo.2015.00143
  47. Chang W.S., Pettersson J.H., Le Lay C. et al. Novel hepatitis D-like agents in vertebrates and invertebrates // Virus Evol. 2019. V. 5. vez021. https://doi.org/ 10.1093/ve/vez021
  48. Chen R., Mukhopadhyay S., Merits A. et al. ICTV Virus Taxonomy Profile: Togaviridae // J. Gen. Virol. 2018. V. 99. P. 761–762. https://doi.org/10.1099/jgv.0.001072
  49. Chiang Y.N., Penadés J.R., Chen J. Genetic transduction by phages and chromosomal islands: the new and noncanonical // PLoS Pathog. 2019. V. 15. e1007878. https://doi.org/10.1371/journal.ppat.1007878
  50. Chinchar V.G., Hick P., Ince I.A. et al. ICTV Virus Taxonomy Profile: Iridoviridae // J. Gen. Virol. 2017. V. 98. P. 890–891. https://doi.org/10.1099/jgv.0.000818
  51. Claverie J.M., Grzela R., Lartigue A. et al. Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges // J. Invertebr. Pathol. 2009. V. 101. P. 172–180. https://doi.org/10.1016/j.jip.2009.03.011
  52. Colson P., La Scola B., Levasseur A. et al. Mimivirus: leading the way in the discovery of giant viruses of amoebae // Nat. Rev. Microbiol. 2017. V. 15. P. 243–254. https://doi.org/10.1038/nrmicro.2016.197
  53. Cotmore S.F., Agbandje-McKenna M., Canuti M. et al. ICTV Virus Taxonomy Profile: Parvoviridae // J. Gen. Virol. 2019. V. 100. P. 367–368. https://doi.org/10.1099/jgv.0.001212
  54. Coutinho F.H., Silveira C.B., Gregoracci G.B. et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans // Nat. Commun. 2017. V. 8. Art. ID 15955. https://doi.org/10.1038/ncomms15955
  55. Cram J., Parada A.E., Fuhrman J.A. Dilution reveals how viral lysis and grazing shape microbial communities // Limnol. Oceanogr. 2016. V. 61. P. 889–905. https://doi.org/10.1002/lno.10259
  56. Dart E., Fuhrman J.A., Ahlgren N. Diverse marine T4-like cyanophage communities are primarily comprised of low-abundance species including species with distinct seasonal, persistent, occasional, or sporadic dynamics // Viruses. 2023. V. 15. Art. 581. https://doi.org/10.3390/v15020581
  57. Danovaro R., Dell’Anno A., Corinaldesi C. et al. Major viral impact on the functioning of benthic deep-sea ecosystems // Nature. 2008. V. 454. P. 1084–1087. https://doi.org/10.1038/nature07268
  58. Danovaro R., Dell’Anno A., Corinaldesi C. et al. Virus-mediated archaeal hecatomb in the deep seafloor // Sci. Adv. 2016. V. 2. e1600492. https://doi.org/10.1126/sciadv.1600492
  59. De Lima J.G.S., Teixeira D.G., Freitas T.T. et al. Evolutionary origin of 2A-like sequences in Totiviridae genomes // Virus Res. 2019. V. 259. P. 1–9. https://doi.org/10.1016/j.virusres.2018.10.011
  60. Dell’Anno A., Corinaldesi C., Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. E2014–E2E19. https://doi.org/10.1073/pnas.1422234112
  61. Delmas B., Attoui H., Ghosh S. et al. ICTV Virus Taxonomy Profile: Birnaviridae // J. Gen. Virol. 2019. V. 100. P. 5–6. https://doi.org/10.1099/jgv.0.001185
  62. DeLong J.P., Van Etten J.L., Al-Ameeli Z. et al. The consumption of viruses returns energy to food chains // Proc. Natl. Acad. Sci. USA. 2023. V. 120. e2215000120. https://doi.org/10.1073/pnas.2215000120
  63. Deng L., Krauss S., Feichtmayer F. et al. Grazing of heterotrophic flagellates on viruses is driven by feeding behavior // Environ. Microbiol. Rep. 2014. V. 6. P. 325–330. https://doi.org/10.1111/1758-2229.12119
  64. Deviatkin A.A., Lukashev A.N., Poleshchuk E.M. et al. The phylodynamics of the rabies viruses in the Russian Federation // PLoS One. 2017. V. 12. e0171855. https://doi.org/10.1371/journal.pone.0171855
  65. Diaz J.M., Plummer S. Production of extracellular reactive oxygen species by phytoplankton: past and future directions // J. Plankton Res. 2018. V. 40. P. 655–666. https://doi.org/10.1093/plankt/fby039
  66. Dietzgen R.G., Kondo H., Goodin M.M. et al. The family Rhabdoviridae: mono-and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins // Virus Res. 2017. V. 227. P. 158–170. https://doi.org/10.1016/j.virusres.2016.10.010
  67. Dion M.B., Oechslin F., Moineau S. Phage diversity, genomics and phylogeny // Nat. Rev. Microbiol. 2020. V. 18. P. 125–138. https://doi.org/10.1038/s41579-019-0311-5
  68. Duda R.L., Teschke C.M. The amazing HK97 fold: versatile results of modest differences // Curr. Opin. Virol. 2019. V. 36. P. 9–16. https://doi.org/10.1016/j.coviro.2019.02.001
  69. Dunigan D., Fitzgerald L.A., Van Etten J.L. Phycodnaviruses: a peek at genetic diversity // Virus Res. 2006. V. 117. P. 119–132. https://doi.org/10.1016/j.virusres.2006.01.024
  70. Dyall-Smith M., Palm P., Wanner G. et al. Halobacterium salinarum virus ChaoS9, a novel Halovirus related to PhiH1 and PhiCh1 // Genes (Basel). 2019. V. 10. Art. ID 194. https://doi.org/10.3390/genes10030194
  71. Edgerton B., Owens L., Giasson B., De Beer S. Description of a small dsRNA virus from freshwater crayfish Cherax quadricarinatus // Dis. Aquat. Org. 1994. V. 18. P. 63–69. https://doi.org/10.3354/dao018063
  72. Edwards R.A., Rohwer F. Viral metagenomics // Nat. Rev. Microbiol. 2005. V. 3. P. 504–510. https://doi.org/10.1038/nrmicro1163
  73. Edwards K.F., Steward G.F., Schrisopher C.R. Making sense of virus size and the tradeoffs shaping viral fitness // Ecol. Lett. 2021. V. 24. P. 363–373. https://doi.org/10.1111/ele.13630
  74. Eich C., Biggs T.E.G., Van de Poll W.H. et al. Ecological importance of viral lysis as a loss factor of phytoplankton in the Amundsen Sea // Microorganisms. 2022. V. 10. Art. ID 1967. https://doi.org/10.3390/microorganisms10101967
  75. Evans C., Brussaard C.P.D. Regional variation in lytic and lysogenic viral infection in the Southern Ocean and its contribution to biogeochemical cycling // Appl. Environ. Microbiol. 2012. V. 78. P. 6741–6748. https://doi.org/10.1128/AEM.01388-12
  76. Finke J.F., Winget D.M., Chan A.M., Suttle C.A. Variation in the genetic repertoire of viruses infecting Micromonas pusilla reflects horizontal gene transfer and links to their environmental distribution // Viruses. 2017. V. 9. Art. ID 116. https://doi.org/10.3390/v9050116
  77. Forterre P., Prangishvili D. The major role of viruses in cellular evolution: facts and hypotheses // Curr. Opin. Virol. 2013. V. 3. P. 558–565. https://doi.org/10.1016/j.coviro.2013.06.013
  78. Fritsvold C., Mikalsen A.B., Haugland Ø. et al. Characterization of early phases of cardiomyopathy syndrome pathogenesis in Atlantic salmon (Salmo salar L.) through various diagnostic methods // J. Fish Dis. 2022. V. 45. P. 1267–1279. https://doi.org/10.1111/jfd.13659
  79. Garseth Å.H., Fritsvold C., Opheim M. et al. Piscine reovirus (PRV) in wild Atlantic salmon, Salmo salar L., and sea-trout, Salmo trutta L., in Norway // J. Fish Dis. 2012. V. 36. P. 483–493. https://doi.org/10.1111/j.1365-2761.2012.01450.x
  80. Gatherer D., Depledge D.P., Hartley C.A. et al. ICTV Virus Taxonomy Profile: Herpesviridae 2021 // J. Gen. Virol. 2021. V. 102. Art. ID 001673. https://doi.org/10.1099/jgv.0.001673
  81. Gregory A.C., Zayed A.A., Conceição-Neto N. et al. Marine DNA viral macro- and microdiversity from pole to pole // Cell. 2019. V. 177. P. 1109–1123. https://doi.org/10.1016/j.cell.2019.03.040
  82. Gudenkauf B.M., Eaglesham J.B., Aragundi W., Hewson I. Discovery of urchin-associated densoviruses (family Parvoviridae) in coastal waters of the Big Island, Hawaii // J. Gen. Virol. 2014. V. 95. P. 652–658. https://doi.org/10.1099/vir.0.060780-0
  83. Guelin A. Bacteriophages and intestinal bacteria in sea fish and the problem of polluted waters // Ann. Inst. Pasteur (Paris). 1952. V. 83. P. 46–56.
  84. Gulyaeva A., Garmaeva Z., Kurilshiko A. et al. Diversity and ecology of Caudoviricetes phages with genome terminal repeats in fecal metagenomes from four Dutch cohorts // Viruses. 2022. V. 14. Art. ID 2305. https://doi.org/10.3390/v14102305
  85. Hara S., Terauchi K., Koike I. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy // Appl. Environ. Microbiol. 1991. V. 57. P. 2731–2734. https://doi.org/10.1128/aem.57.9.2731-2734.1991
  86. Häring M., Vestergaard G., Brügger K. et al. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures // J. Bacteriol. 2005. V. 187. P. 3855–3858. https://doi.org/10.1128/JB.187.11.3855-3858.2005
  87. Harrison R.L., Herniou E.A., Bézier A. et al. ICTV Virus Taxonomy Profile: Nudiviridae // J. Gen. Virol. 2020. V. 101. P. 3–4. https://doi.org/10.1099/jgv.0.001381
  88. He T., Jin M., Zhang X. Marine viruses // Virus infection and tumorigenesis / Ed. X. Zhang Singapore: Springer Nature. 2019. P. 25–62. https://doi.org/10.1007/ 978-981-13-6198-2_2
  89. Hevroni G., Flores-Uribe J., Béj O., Philosof A. Seasonal and diel patterns of abundance and activity of viruses in the Red Sea // Proc. Natl. Acad. Sci. U.S.A. 2020. V. 117. P. 29738–29747. https://doi.org/10.1073/pnas.2010783117
  90. Hierweger M.M., Koch M.C., Rupp M. et al. Novel Filoviruses, Hantavirus, and Rhabdovirus in freshwater fish, Switzerland, 2017. Emerging Infect. Dis. 2021. V. 27. P. 3082–3091. https://doi.org/10.3201/eid2712.210491
  91. Hobbs Z., Abedon S.T. Diversity of phage infection types and associated terminology: the problem with “Lytic or lysogenic” // FEMS Microbiol. Lett. 2016. V. 363. fnw047. https://doi.org/10.1093/femsle/fnw047
  92. Horie M. Identification of a novel filovirus in a common lancehead (Bothrops atrox (Linnaeus, 1758)) // J. Vet. Med. Sci. 2021. V. 83. P. 1485–1488. https://doi.org/10.1292/jvms.21-0285
  93. Howard-Varona C., Hargreaves K.R., Abedon S.T., Sullivan M.B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages // ISME J. 2017. V. 11. P. 1511–1520. https://doi.org/10.1038/ismej.2017.16
  94. Huang P., Zhang X., Ame K.H. et al. Genomic and phylogenetic characterization of a bunya-like virus from the freshwater Chinese mitten crab Eriocheir sinensis // Acta Virol. 2019. V. 63. P. 433–438. https://doi.org/10.4149/av_2019_410
  95. Hughes H.R., Adkins S., Alkhovskiy S. et al. ICTV Virus Taxonomy Profile: Peribunyaviridae // J. Gen. Virol. 2020. V. 101. P. 1–2. https://doi.org/10.1099/jgv.0.001365
  96. Hurwitz B.L., Brum J.R., Sullivan M.B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean virome // ISME J. 2015. V. 9. P. 472−484. https://doi.org/10.1038/ismej.2014.143
  97. Iranzo J., Krupovic M., Koonin E.V. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing // MBio. 2016. V. 7. e00978-16. https://doi.org/10.1128/mBio.00978-16
  98. Jansen M.D., Jensen B.B., McLoughlin M.F. et al. The epidemiology of pancreas disease in salmonid aquaculture: a summary of the current state of knowledge // J. Fish Dis. 2017. V. 40. P. 141–155. https://doi.org/10.1111/jfd.12478
  99. Jin M., Cai L., Ma R. et al. Prevalence of temperate viruses in deep South China Sea and western Pacific Ocean // Deep-Sea Res. Pt. I. 2020. V. 166. Art. ID 103403. https://doi.org/10.1016/j.dsr.2020.103403
  100. Jover L.F., Effler T.C., Buchan A. et al. The elemental composition of virus particles: implications for marine biogeochemical cycles // Nat. Rev. Microbiol. 2014. V. 12. P. 519–528. https://doi.org/10.1038/nrmicro3289
  101. Kazlauskas D., Varsani A., Koonin E.V., Krupovic M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids // Nat. Commun. 2019. V. 10. Art. ID 3425. https://doi.org/10.1038/s41467-019-11433-0
  102. Kibenge M.J.T., Iwamoto T., Wang Y. et al. Whole-genome analysis of piscine reovirus (PRV) shows PRV represents a new genus in family Reoviridae and its genome segment S1 sequences group it into two separate sub-genotypes // Virol. J. 2013. V. 10. Art. ID 230. https://doi.org/10.1186/1743-422X-10-230
  103. Kraberger S., Austin C., Farkas K. et al. Discovery of novel fish papillomaviruses: from the Antarctic to the commercial fish market // Virology. 2022. V. 565. P. 65–72. https://doi.org/10.1016/j.virol.2021.10.007
  104. Koonin E.V., Dolja V.V., Krupovic M. et al. Global organization and proposed megataxonomy of the virus world // Microbiol. Mol. Biol. Rev. 2020. V. 84. e00061-19. https://doi.org/10.1128/ MMBR.00061-19
  105. Koskella B., Meaden S. Understanding bacteriophage specificity in natural microbial communities // Viruses. 2013. V. 5. P. 806–823. https://doi.org/10.3390/v5030806
  106. Krupovic M., Dolja V.V., Koonin E.V. The LUCA and its complex virome // Nat. Rev. Microbiol. 2020. V. 18. P. 661–670. https://doi.org/10.1038/s41579-020-0408-x
  107. Krupovic M., Kuhn J.S., Wang F. et al. Adnaviria: a new realm for archaeal filamentous viruses with linear a-form double-stranded DNA genomes // J. Virol. 2021. V. 95. e0067321. https://doi.org/10.1128/JVI.00673-21
  108. Krupovic M., Makarova K.S., Wolf Y.I. et al. Integrated mobile genetic elements in Thaumarchaeota // Environ. Microbiol. 2019. V. 21. P. 2056–2078. https://doi.org/10.1111/1462-2920.14564
  109. Krupovic M., Spang A., Gribaldo S. et al. A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea // Biochem. Soc. Trans. 2011. V. 39. P. 82–88. https://doi.org/10.1042/BST0390082
  110. Krylova N.V., Silchenko A.S., Pott A.B. et al. In vitro anti-Orthohantavirus activity of the high-and low-molecular-weight fractions of fucoidan from the brown alga Fucus evanescens // Mar. Drugs. 2021. V. 19. Art. ID 577. https://doi.org/10.3390/md19100577
  111. Lang A.S., Vlok M., Culley A.I. et al. ICTV Virus Taxonomy Profile: Marnaviridae 2021 // J. Gen. Virol. 2021. V. 102. Art. ID 001633. https://doi.org/10.1099/jgv.0.001633
  112. Lara E., Vaqué D., Sà E.L. et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean // Sci. Adv. 2017. V. 3. e1602565. https://doi.org/10.1126/sciadv.1602565
  113. Lee B.D., Koonin E.V. Viroids and viroid-like circular RNAs: Do they descend from primordial replicators? // Life. 2022. V. 12. Art. ID 103. https://doi.org/10.3390/life12010103
  114. Lefkowitz E.J., Dempsey D.M., Hendrickson R.C. et al. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV) // Nucleic Acids Res. 2018. V. 46. P. D708–D717. https://doi.org/10.1093/nar/gkx932
  115. Liu Y., Demina T.A., Roux S. et al. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes // PLoS Biol. 2021. V. 19. e3001442. https://doi.org/10.1371/journal.pbio.3001442
  116. López-Sanmartín M., López-Fernández J.R., Cunha M.E. et al. Ostreid herpesvirus in wild oysters from the Huelva coast (SW Spain) // Dis. Aquat. Org. 2016. V. 120. P. 231–240. https://doi.org/10.3354/dao03031
  117. Lvov D.K., Shchelkanov M.Yu., Alkhovsky S.V., Deryabin P.G. Zoonotic viruses of Northern Eurasia: Taxonomy and ecology. Academic Press. 2015. 452 p.
  118. Lycke E., Magnusson S., Lund E. Studies on the nature of the virus inactivating capacity of sea water // Arch. Gesamte Virusforsch. 1965. V. 17. P. 409–413. https://doi.org/10.1007/BF01241195
  119. Magnusson S., Hedström C.E., Lycke E. The virus inactivating capacity of sea water // Acta Pathol. Microbiol. Scand. 1966. V. 66. P. 551–559. https://doi.org/10.1111/apm.1966.66.4.551
  120. Malathi V.G., Devi P.R. ssDNA viruses: key players in global virome // VirusDis. 2019. V. 30. P. 3–12. https://doi.org/10.1007/s13337-019-00519-4
  121. Maness H.T., Nollens H.H., Jensen E.D. et al. Phylogenetic analysis of marine mammal herpesviruses // Vet. Microbiol. 2011. V. 149. P. 23–29. https://doi.org/ 10.1016/j.vetmic.2010.09.035
  122. Mäntynen S., Laanto E., Oksanen H.M. et al. Black box of phage-bacterium interactions: exploring alternative phage infection strategies // Open Biol. 2021. V. 11. Art. ID 210188. https://doi.org/10.1098/rsob.210188
  123. Marie D., Brussaard C.P.D., Thyrhaug R. et al. Enumeration of marine viruses in culture and natural samples by flow cytometry // Appl. Environ. Microbiol. 1999. V. 65. P. 45–52. https://doi.org/10.1128/AEM.65.1.45-52.1999
  124. Martinez-Hernandez F., Fornas O., Martinez-Garcia M. Into the dark: exploring the deep ocean with single-virus genomics // Viruses. 2022. V. 14. Art. 1589. https://doi.org/10.3390/v14071589
  125. Marty G.D., Morrison D.B., Bidulka J. et al. Piscine reovirus in wild and farmed salmonids in British Columbia, Canada: 1974–2013 // J. Fish Dis. 2015. V. 38. P. 713–728. https://doi.org/10.1111/jfd.12285
  126. Masood N., Malik S.S., Raja M.N. et al. Unraveling the epidemiology, geographical distribution, and genomic evolution of potentially lethal coronaviruses (SARS, MERS, and SARS CoV-2) // Front. Cell. Infect. Microbiol. 2020. V. 10. Art. 499. https://doi.org/10.3389/fcimb.2020.00499
  127. Matthews R.E.F. The history of viral taxonomy // A critical appraisal of viral taxonomy / Ed. R.E.F. Matthews. Boca Raton, Florida: CRC Press. 1983. P. 1–35.
  128. Matthijnssens J., Attoui H., Bányai K. et al. ICTV Virus Taxonomy Profile: Sedoreoviridae 2022 // J. Gen. Virol. 2022a. V. 103. Art. ID 001782. https://doi.org/10.1099/jgv.0.001782
  129. Matthijnssens J., Attoui H., Bányai K. et al. ICTV Virus Taxonomy Profile: Spinareoviridae 2022 // J. Gen. Virol. 2022b. V. 103. Art. ID 001781. https://doi.org/10.1099/jgv.0.001781
  130. McKeown D.A., Stevens K., Peters A.F. et al. Phaeoviruses discovered in kelp (Laminariales) // ISME J. 2017. V. 11. P. 2869–2873. https://doi.org/10.1038/ismej.2017.130
  131. McLoughlin M.F., Graham D.A. Alphavirus infections in salmonids. A review // J. Fish Dis. 2007. V. 30. P. 511–531. https://doi.org/10.1111/j.1365-2761.2007.00848.x
  132. Middelboe M., Brussaard C.P.D. Marine viruses: key players in marine ecosystems // Viruses. 2017. V. 9. Art. ID 302. https://doi.org/10.3390/v9100302
  133. Miranda J.A., Culley A.I., Schvarcz C.R., Steward G.F. RNA viruses as major contributors to Antarctic virioplankton // Environ. Microbiol. 2016. V. 18. P. 3714–3727. https://doi.org/10.1111/1462-2920.13291
  134. Mizuno C.M., Prajapati B., Lucas-Staat S. et al. Novel haloarchaeal viruses from Lake Retba infecting Haloferax and Halorubrum species // Environ. Microbiol. 2019. V. 21. P. 2129–2147. https://doi.org/10.1111/1462-2920.14604
  135. Moelling K., Broecker F. Viruses and evolution – viruses first? A personal perspective // Front. Microbiol. 2019. V. 10. Art. ID 523. https://doi.org/10.3389/fmicb.2019.00523
  136. Montanie H., Bossy J.-P., Bonami J.-R. Morphological and genomic characterization of two reoviruses (P and W2) pathogenic for marine crustaceans; do they constitute a novel genus of the Reoviridae family? // J. Gen. Virol. 1993. V. 74. P. 1555–1561. https://doi.org/10.1099/0022-1317-74-8-1555
  137. Munson-McGee J.H., Snyder J.C., Young M.J. Archaeal viruses from high-temperature environments // Genes (Basel). 2018. V. 9. Art. ID 128. https://doi.org/10.3390/genes9030128
  138. Mutoloki S., Jøssund T.B., Ritchie G. et al. Infectious pancreatic necrosis virus causing clinical and subclinical infections in Atlantic salmon have different genetic fingerprints // Front. Microbiol. 2016. V. 7. Art. ID 1393. https://doi.org/10.3389/fmicb.2016.01393
  139. Noda T. [Orthomyxoviruses // Uirusu. 2012. V. 62. P. 219–228. (На яп. яз.) https://doi.org/10.2222/jsv.62.219
  140. Notaro A., Poirot O., Garcin E.D. et al. Giant viruses of the Megavirinae subfamily possess biosynthetic pathways to produce rare bacterial-like sugars in a clade-specific manner // Microlife. 2022. V. 3. P. 1–23. https://doi.org/10.1093/femsml/uqac002
  141. Palacios G., Løvoll M., Tengs T. et al. Heart and skeletal muscle inflammation of farmed salmon is associated with infection with a novel reovirus // PLoS One. 2010. V. 5. e11487. https://doi.org/10.1371/journal.pone.0011487
  142. Payet J.P., Suttle C.A. To kill or not to kill: the balance between lytic and lysogenic viral infections is driven by trophic status // Limnol. Oceanogr. 2013. V. 58. P. 465–474. https://doi.org/10.4319/lo.2013.58.2.0465
  143. Paul J.H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? // ISME J. 2008. V. 2. P. 579–589. https://doi.org/10.1038/ismej.2008.35
  144. Peretti A., FitzGerald P.C., Bliskovsky V. et al. Genome sequence of a fish-associated polyomavirus, black sea bass (Centropristis striata) Polyomavirus 1 // Genome Announce. 2015. V. 3. e01476-14. https://doi.org/10.1128/genomeA.01476-14.
  145. Philosof A., Yutin N., Flores-Uribe J. et al. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota // Curr. Biol. 2017. V. 27. P. 1362–1368. https://doi.org/10.1016/j.cub.2017.03.052
  146. Plissier M. Inactivation in sea water and drinking water of certain enteroviruses // Arch. Gesamte Virusforsch. 1963. V. 13. P. 76–81.
  147. Poorvin L., Rinta-Kanto J.M., Hutchins D.A., Wilhelm S.W. Viral release of iron and its bioavailability to marine plankton // Limnol. Oceanogr. 2004. V. 49. P. 1734–1741. https://doi.org/10.4319/lo.2004.49.5.1734
  148. Prado-Alvarez M., García-Fernandez P., Faury N. et al. First detection of OsHV-1 in the cephalopod Octopus vulgaris. Is the octopus a dead-end for OsHV-1? // J. Invertebr. Pathol. 2021. V. 183. Art. ID 107553. https://doi.org/10.1016/j.jip.2021.107553
  149. Prangishvili D., Bamford D.H., Forterre P. et al. The enigmatic archaeal virosphere // Nat. Rev. Microbiol. 2017. V. 15. P. 724–739. https://doi.org/10.1038/nrmicro.2017.125
  150. Record N.R., Talmy D., Vage S. Quantifying tradeoffs for marine viruses // Front. Mar. Sci. 2016. V. 3. Art. 251. https://doi.org/10.3389/fmars. 2016.00251
  151. Ren W., Chen H., Renault T. et al. Complete genome sequence of acute viral necrosis virus associated with massive mortality outbreaks in the Chinese scallop, Chlamys farrer // Virol. J. 2013. V. 10. Art. 110. https://doi.org/10.1186/1743-422X-10-110
  152. Renault T., Novoa B. Viruses infecting bivalve mollusks // Aquat. Living Resour. 2004. V. 17. P. 397–409. https://doi.org/10.1051/alr:2004049
  153. Rima B., Balkema-Buschmann A., Dundon W.G. et al. ICTV Virus Taxonomy Profile: Paramyxoviridae // J. Gen. Virol. 2019. V. 100. P. 1593–1594. https://doi.org/10.1099/jgv.0.001328
  154. Rodger H.D., McCleary S.J., Ruane N.M. Clinical cardiomyopathy syndrome in Atlantic salmon, Salmo salar L. // J. Fish Dis. 2014. V. 37. P. 935–939. https://doi.org/10.1111/jfd.12186
  155. Rohwer F., Thurber R.V. Viruses manipulate the marine environment // Nature. 2009. V. 459. P. 207–212. https://doi.org/10.1038/nature08060
  156. Roux S., Brum J.R., Dutilh B.E. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses // Nature. 2016. V. 537. P. 689–693. https://doi.org/10.1038/nature19366
  157. Safonova M.V., Shchelkanov M.Yu., Khafizov K.F. et al. Sequencing and genetic characterization of two strains Paramushir virus obtained from the Tyuleniy Island in the Okhotsk Sea (2015) // Ticks Tick Borne Dis. 2019. V. 10. P. 269–279. https://doi.org/10.1016/j.ttbdis.2018.11.004
  158. Senčilo A., Jacobs-Sera D., Russell D.A. et al. Snapshot of haloarchaeal tailed virus genomes // RNA Biol. 2013. V. 10. P. 803–816. https://doi.org/10.4161/rna.24045
  159. Shchelkanov M.Yu., Yudin A.N., Antonov A.V. et al. Variability analysis of HIV-1 gp120 V3 region: II. Hierarchy of taxons // J. Biomol. Struct. Dyn. 1997. V. 15. P. 231–241.
  160. Shi M., Lin X.D., Chen X. et al. The evolutionary history of vertebrate RNA viruses // Nature. 2018. V. 556. P. 197–202. https://doi.org/10.1038/s41586-018-0012-7
  161. Shope R.E. The swine lungworm as a reservoir and intermediate host for swine influenza virus. IV. The demonstration of masked swine influenza virus in lungworm larvae and swine under natural conditions // J. Exp. Med. 1943. V. 77. P. 127–138.
  162. Siddell S.G., Smith D.B., Adriaenssens E. et al. Virus taxonomy and the role of the International Committee on Taxonomy of Viruses (ICTV) // J. Gen. Virol. 2023. V. 104. Art. ID 01840. https://doi.org/10.1099/jgv.0.001840
  163. Simmonds P., Aiewsakun P. Virus classifcation – where do you draw the line? // Arch. Virol. 2018. V. 163. P. 2037–2046. https://doi.org/10.1007/s00705-018-3938-z
  164. Spencer R. A marine bacteriophage // Nature. 1955. V. 175. P. 690–691. https://doi.org/10.1038/175690a0
  165. Steward G.F., Culley A.I., Mueller J.A. et al. Are we missing half of the viruses in the ocean? // ISME J. 2013. V. 7. P. 672–679. https://doi.org/10.1038/ismej.2012.121
  166. Suttle C.A., Chan A.M., Cottrell M.T. Infection of phytoplankton by viruses and reduction of primary productivity // Nature. 1990. V. 347. P. 467–469. https://doi.org/10.1038/347467a0
  167. Suttle C.A. Marine viruses – major players in the global ecosystem // Nat. Rev. Microbiol. 2007. V. 5. P. 801–812. https://doi.org/10.1038/nrmicro1750
  168. Sutton T.D., Hill C. Gut bacteriophage: current understanding and challenges // Front. Endocrinol. 2019. V. 10. Art. 784. https://doi.org/10.3389/fendo.2019.00784
  169. Thingstad T.F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems // Limnol. Oceanogr. 2000. V. 45. P. 1320–1328.
  170. Thompson L., Zeng Q., Kelly L. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. E757–E764. https://doi.org/10.1073/pnas.1102164108
  171. Turner D., Kropinski A.M., Adriaenssens E.M. A roadmap for genome-based phage taxonomy // Viruses. 2021. V. 13. Art. ID 506. https://doi.org/10.3390/v13030506
  172. Valles S.M., Chen Y., Firth A.E. et al. ICTV Virus Taxonomy Profile: Dicistroviridae // J. Gen. Virol. 2017. V. 98. P. 355–356. https://doi.org/10.1099/jgv.0.000756
  173. Van Doorslaer K., Chen Z., Bernard H.-U. et al. Virus Taxonomy Profile: Papillomaviridae // J. Gen. Virol. 2018. V. 99. P. 989–990. https://doi.org/10.1099/jgv.0.001105
  174. Van Etten J.L., Graves M.V., Müller D.G. et al. Phycodnaviridae − large DNA algal viruses // Arch. Virol. 2002. V. 147. P. 1479–1516. https://doi.org/10.1007/s00705-002-0822-6
  175. Van Regenmortel M.H.V. Classes, taxa and categories in a hierarchical virus classification: a review of current debates of definitions and names of virus species // Bionomina. 2016. V. 10. P. 1–21. https://doi.org/10.11646/bionomina.10.1.1
  176. Vincent A., La Scola B., Papazian L. Advances in Mimivirus pathogenicity // Intervirology. 2010. V. 53. P. 304–309. https://doi.org/10.1159/000312915
  177. Vinjé J., Estes M.K., Esteves P. et al. ICTV Virus Taxonomy Profile: Caliciviridae // J. Gen. Virol. 2019. V. 100. P. 1469–1470. https://doi.org/10.1099/jgv.0.001332
  178. Walker P.J., Siddell S.G., Lefkowitz E.J. et al. Changes to virus taxonomy and the International Code of Virus Classifcation and Nomenclature ratifed by the International Committee on Taxonomy of Viruses (2019) // Arch. Virol. 2019. V. 164. P. 2417–2429. https://doi.org/10.1007/s00705-019-04306-w
  179. Walker P.J., Siddell S.G., Lefkowitz E.J. et al. Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020) // Arch. Virol. 2020. V. 165. P. 2737–2748. https://doi.org/10.1007/s00705-020-04752-x
  180. Walker P.J., Siddell S.G., Lefkowitz E.J. et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022) // Arch. Virol. 2022. V. 167. P. 2429–2440. https://doi.org/10.1007/s00705-022-05516-5
  181. Waltzek T.B., Subramaniam K., Leis E. et al. Characterization of a peribunyavirus isolated from largemouth bass (Micropterus salmoides) // Virus Res. 2019. V. 273. Art. ID 197761. https://doi.org/10.1016/j.virusres.2019.197761
  182. Wang H.-C., Hirono I., Maningas M.B.B. et al. ICTV Virus Taxonomy Profile: Nimaviridae // J. Gen. Virol. 2019. V. 100. P. 1053–1054. https://doi.org/10.1099/jgv.0.001248
  183. Weinbauer M.G., Bonilla-Findji O., Chan A.M. et al. Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria // J. Plankton Res. 2011. V. 33. P. 465–476. https://doi.org/10.1093/plankt/fbr041
  184. Weinbauer M.G., Brettar I., Höfle M.G. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters // Limnol. Oceanogr. 2003. V. 48. P. 1457–1465. https://doi.org/10.4319/lo.2003.48.4.1457
  185. Weitz J.S., Stock C.A., Wilhelm S.W. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes // ISME J. 2015. V. 9. P. 1352–1364. https://doi.org/10.1038/ismej.2014.220
  186. Weitz J.S., Wilhelm S. Ocean viruses and their effects on microbial communities and biogeochemical cycles // F1000 Biol. Rep. 2012. V. 4. Art. ID 17. https://doi.org/10.3410/B4-17
  187. Wickner R.B., Ghabrial S.A., Niber M.L. et al. Family Totiviridae // Virus taxonomy: Classification and nomenclature of viruses: Ninth report of the International Committee on Taxonomy of Viruses. Tokyo: Elsevier Academic Press. 2011. P. 639–650.
  188. Wiik-Nielsen C.R., Løvoll M., Sandlund N. et al. First detection of piscine reovirus (PRV) in marine fish species // Dis. Aquat. Org. 2012. V. 97. P. 255–258. https://doi.org/10.3354/dao02425
  189. Williams T., Bergoin M., van Oers M.M. Diversity of large DNA viruses of invertebrates // J. Invertebr. Pathol. 2016. V. 147. P. 4–22. https://doi.org/10.1016/j.jip.2016.08.001
  190. Williamson K.E., Fuhrmann J.J., Wommack K.E., Radosevich M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory // Annu. Rev. Virol. 2017. V. 4. P. 201–219. https://doi.org/10.1146/annurev-virology-101416-041639
  191. Williamson S.J., Houchin L.A., McDaniel L., Paul J.H. Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida // Appl. Environ. Microbiol. 2002. V. 68. P. 4307–4314. https://doi.org/10.1128/AEM.68.9.4307-4314.2002
  192. Wommack K.E., Ravel J., Hill R.T. et al. Population dynamics of Chesapeake Bay virioplankton: total-community analysis by pulsed-field gel electrophoresis // Appl. Environ. Microbiol. 1999. V. 65. P. 231–240. https://doi.org/10.1128/AEM.65.1.231-240.1999
  193. Woo P.C.Y., de Groot R.J., Haagmans B. et al. ICTV Virus Taxonomy Profile: Coronaviridae 2023 // J. Gen. Virol. 2023. V. 104. https://doi.org/10.1099/jgv.0.001843
  194. Woo A.C., Gaia M., Guglielmini J. et al. Phylogeny of the Varidnaviria morphogenesis module: congruence and incongruence with the tree of life and viral taxonomy // Front. Microbiol. 2021. V. 12. Art. ID 704052. https://doi.org/10.3389/fmicb.2021.704052
  195. Woo P.C.Y., Lau S.K.P., Lam C.S.F. et al. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus // J. Virol. 2014. V. 88. P. 1318–1331. https://doi.org/10.1128/JVI.02351-13
  196. Xue Q., Liu H., Zhu Z. et al. African swine fever virus regulates host energy and amino acid metabolism to promote viral replication // J. Virol. 2022. V. 96. e0191921. https://doi.org/10.1128/JVI.01919-21
  197. Zell R., Delwart E., Gorbalenya A.E. et al. ICTV Virus Taxonomy Profile: Picornaviridae // J. Gen. Virol. 2017. V. 98. P. 2421–2422. https://doi.org/10.1099/jgv.0.000911
  198. Zerbini F.M., Siddell S.G., Mushegian A.R. et al. Differentiating between viruses and virus species by writing their names correctly // Arch. Virol. 2022. V. 167. P. 1231–1234. https://doi.org/10.1007/s00705-021- 05323-4
  199. Zhang R., Li Y., Yan W., et al. Viral control of biomass and diversity of bacterioplankton in the deep sea // Commun. Biol. 2020. V. 3. Art. 256. https://doi.org/10.1038/s42003-020-0974-5
  200. Zhang Z., Wu Z., Liu H. et al. Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus // Front. Microbiol. 2023. V. 14. Art. ID 1164101. https://doi.org/10.3389/fmicb.2023.1164101
  201. Zhang C.L., Xie W., Martin-Cuadrado A.-B., Rodriguez-Valera F. Marine Group II Archaea, potentially important players in the global ocean carbon cycle // Front. Microbiol. 2015. V. 6. Art. 1108. https://doi.org/10.3389/fmicb.2015.01108
  202. Zhao M., Xu L., Bowers H., Schott E.J. Characterization of two novel toti-like viruses co-infecting the Atlantic blue crab, Callinectes sapidus, in its northern range of the United States // Front. Microbiol. 2022. V. 13. Art. ID 855750. https://doi.org/10.3389/fmicb.2022.855750
  203. Zhu Y., Shang J., Peng C., Sun Y. Phage family classification under Caudoviricetes: a review of current tools using the latest ICTV classification framework // Front. Microbiol. 2022. V. 13. Art. ID 1032186. https://doi.org/10.3389/fmicb.2022.1032186
  204. Zimmerman A.E., Howard-Varona C., Needham D.M. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems // Nat. Rev. Microbiol. 2020. V. 18. P. 21–34. https://doi.org/10.1038/s41579-019-0270-x

Copyright (c) 2024 The Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies