Dynamics of Zooplankton Consumption by the Three-speed Stickleleback Gasterosteus aculeatus (Linnaeus, 1758) at Different Densities of the Predator
- Authors: Lobyrev F.S.1
-
Affiliations:
- Lomonosov Moscow State University (MSU), Biological Faculty
- Issue: Vol 49, No 6 (2023)
- Pages: 386-395
- Section: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Published: 01.11.2023
- URL: https://journals.rcsi.science/0134-3475/article/view/232304
- DOI: https://doi.org/10.31857/S0134347523060050
- EDN: https://elibrary.ru/IDJAQA
- ID: 232304
Cite item
Abstract
An experiment was set up to estimate the rate of zooplankton consumption by the three-spined stickleback Gasterosteus aculeatus (Linnaeus, 1758) at different predator densities. A differential equation describes the dynamics of zooplankton abundance depending on duration of predator feeding. The derived function accurately characterizes the rate of zooplankton consumption by stickleback in the experiment, demonstrating a good agreement between the theoretical prerequisites and the experimental results. The relationship between changing a number of prey during predation, its mortality and consumption rate was revealed. The hypothesis of consumption rate proportional to the number of predators was tested. A comparative analysis of ingestion rate as a function of time and a function of prey density was performed.
About the authors
F. S. Lobyrev
Lomonosov Moscow State University (MSU), Biological Faculty
Author for correspondence.
Email: lobyrev@mail.ru
Russia, 119991, Moscow
References
- Баранов Ф.И. К вопросу о биологических основаниях рыбного хозяйства // Изв. Отдела рыбоводства и научно-промысл. исслед. 1918. Т. 1. Вып. 2. С. 84–128.
- Бигон М., Харпер Д., Таунсенд К. Экология. Особи, популяции, сообщества. М.: Мир. 1989.
- Бондарчук О.Л., Герасимов Ю.В. Особенности пищевого и поискового поведения молоди стерляди при прудовом и бассейновом подращивании // Изв. КГТУ. 2016. № 42. С. 30–38.
- Голубков С.М., Адрин Н.В., Голубков М.С. и др. Пищевые цепи и их динамика в экосистемах мелководных озер с различной соленостью воды // Экология. 2018. Т. 49. С. 391–398.
- Ивлев В.С. Экспериментальная экология питания рыб. М.: Пищпромиздат. 1955. 246 с.
- Касумян А.О., Михайлова Е.С. Вкусовые предпочтения и пищевое поведение трехиглой колюшки Gaste-rosteus aculeatus популяций бассейнов Атлантического и Тихого океанов // Вопр. ихтиологии. 2014. Т. 54. С. 446–469.
- Михайлова Е.С., Касумян А.О. Вкусовые предпочтения и пищевое поведение трехиглой колюшки Gaste-rosteus aculeatus в морских и пресных водах // Вопр. ихтиологии. 2010. Т. 50. № 6. С. 828–840.
- Одум Ю. Экология. М.: Мир. 1986.
- Anderson T.W. Predator responses, prey refuges, and density-dependent mortality of a marine fish // Ecology. 2001. V. 82. P. 245–257.
- Bakhvalova A.E., Ivanova T.S., Ivanov M.V. et al. Long-term changes in the role of threespine stickleback (Gasterosteus aculeatus) in the White Sea: predatory fish consumption reflects fluctuating stickleback abundance during the last century // Evol. Ecol. Res. 2016. V. 17. № 3. P. 317–334.
- Barrios O’Neill D., Dick J.T.A., Emmerson M.C. et al. Fortune favours the bold: A higher predator reduces the impact of a native but not an invasive intermediate predator // J. Anim. Ecol. 2014. V. 83. P. 693–701.
- Bax N. The significance and prediction of predation in marine fisheries // ICES Mar. Sci. Symp. 1998. V. 55. P. 997–1030.
- Bell A.M., Henderson L., Huntingford F.A. Behavioral and respiratory responses to stressors in multiple populations of threespined sticklebacks that differ in predation pressure // J. Comp. Physiol. Part B. 2010. V. 180. P. 211–220.
- Britton J.R., Davies G.D., Harrod C. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK // Biol. Invasions. 2010. V. 12. P. 1533–1542.
- Broom C.J., South J., Weyl O. Prey type and temperature influence functional responses of threatened endemic Cape Floristic Ecoregion fishes // Environ. Biol. Fishes. 2021. V. 104. P. 797–810.
- Browse U., Hence R.B., Rall B.C. et al. Foraging theory predicts predator–prey energy fluxes // J. Anim. Ecol. 2008. V. 77. P. 1072–1078.
- Charnov E. Optimal foraging, the marginal value theorem // Theor. Pop. Biol. 1976. V. 9. P. 129–136.
- Christensen V., Walters C. Ecopath with Ecosim: methods, capabilities and limitations // Ecol. Model. 2004. V. 172. P. 109–139.
- Dunn R.P., Hovel K.A. Predator type influences the frequency of functional responses to prey in marine habitats // Biol. Lett. 2020. V. 16. 20190758.
- Englund G., Öhlund G., Hein C., Diehl S. Temperature dependence of the functional response // Ecol. Lett. 2011. V. 14. P. 914–921.
- Fauchald P., Erikstad K.E., Skarsfjord H. Scale-dependent predator–prey interactions: the hierarchical spatial distribution of seabirds and prey // Ecology. 2011. V. 81. P. 773–783.
- Fiksen Ø., Utne A.C.W., Aksnes D.L. et al. Modelling the influence of light, turbulence and ontogeny on ingestion rates in larval cod and herring // Fish. Oceanogr. 1998. V. 7. P. 355–363.
- Furey N.B., Armstrong J.B., Beauchamp D.A., Hinch S.G. Migratory coupling between predators and prey // Nat. Ecol. Evol. 2018. V. 2. P. 1846–1853. https://doi.org/10.1038/s41559-018-0711-3
- Gaichas S.K., Aydin K.Y., Francis R.C. Using food web model results to inform stock assessment estimates of mortality and production for ecosystem based fisheries management // Can. J. Fish. Aquat. Sci. 2010. V. 67. P. 1490–1506.
- Genelt-Yanovskiy A.S., Polyakova N.V., Ivanov M.V. et al. Tracing the food web of changing Arctic Ocean: trophic status of highly abundant fish, Gasterosteus aculeatus (L.), in the White Sea recovered using stomach content and stable isotope analyses // Diversity. V. 14. № 11. P. 955–2022. https://doi.org/10.3390/d14110955
- Gross J., Shipley L., Hobbs N. et al. Functional response of herbivores in food-concentrated patches: tests of a mechanistic model // Ecology. 1993. V. 74. P. 778–791.
- Guénette S., Christensen V., Pauly D. Fisheries impacts on North Atlantic ecosystems: Models and analyses. Fi-sheries Centre, Univ. of British Columbia. 2001. V. 3. 350 p.
- Hanache P., Spataro T., Format C., et al. Noise-induced reduction in the attack rate of a planktivorous freshwater fish revealed by functional response analysis // Freshwater. Biol. 2020. P. 75-85.
- Harper D., Blake R. Energetics of piscivorous predator-prey interactions // J. Theor. Biol. 1988. V. 134. P. 59–76.
- Helenius L.K., Borg J.P.G., Nurminen L. et al. The effects of turbidity on prey consumption and selection of zooplanktivorous Gasterosteus aculeatus L. // Aquat. Ecol. 2013. V. 47. P. 349–356.
- Houde E., Schekter R. Feeding by marine fish larvae: developmental and functional responses // Environ. Biol. Fishes. 1980. V. 5. P. 315–334.
- Hunsicker M.E., Ciannelli L., Bailey K.M. et al. Functional responses and scaling in predator–prey interactions of marine fishes: contemporary issues and emerging concepts // Ecol. Lett. 2011. V. 14. P. 1288–1299.
- Huntingford F.A., Ruiz-Gomez M.L. Three-spined sticklebacks Gasterosteus aculeatus as a model for exploring behavioural biology // J. Fish Biol. 2009. V. 75. P. 1943–1976.
- Huntingford F.A., Wright P.J. How stickleback learn to avoid dangerous feeding patches // Behav. Processes. 1989. V. 19. P. 181–189.
- Karve A.D., von Hippel F.A., Bell M.A. Isolation between sympatric anadromous and resident threespine stickleback species in Mud Lake, Alaska // Environ. Biol. Fishes. 2008. V. 81. P. 287–296.
- Kishi M.J., Kashiwai M., Ware D.M. et al. NEMURO – a lower trophic level model for the North Pacific marine ecosystem // Ecol. Model. 2007. V. 202. P. 12–25.
- Kottas C., Mangel A.M. Bayesian analysis of size-dependent overwinter mortality from size-frequency distributions // Ecology. 2010. V. 91. P. 1016–1024.
- Laundré J.W. Behavioral response races, predator–prey shell games, ecology of fear, and patch use of pumas and their ungulate prey // Ecology. 2010. V. 91. P. 2995–3007.
- Mikhailova E.S., Kasumyan A.O. Comparison of taste pre-ferences in the three-spined Gasterosteus aculeatus and nine-spined Pungitius pungitius sticklebacks from the White Sea Basin // J. Ichthyol. 2006. V. 46. Suppl. 2. P. S151–S160. https://doi.org/10.1134/s003294520611004x
- Miller T.J., Crowder L.B., Rice J.A., Binkowski F.P. Body size and the ontogeny of the functional response in fishes // Can. J. Fish. Aquat. Sci. 1992. V. 49. P. 805–812.
- Mofu L., South J., Wasserman R.J. et al. Inter-specific differences in invader and native fish functional responses illustrate neutral effects on prey but superior invader competitive ability // Freshwater Biol. 2019. fwb.13361.
- Murray G.P.D., Stillman R.A., Gozlan R.E. et al. Experimental predictions of the functional response of a freshwater fish // Ethology. 2013. V. 119. P. 751–761.
- Nolet B., Klaassen K. Retrodicting patch use by foraging swans in a heterogeneous environment using a set of functional responses // Oikos. 2009. V. 118. P. 431–439.
- Oaten A. Optimal foraging in patches: a case for stochasti-city // Theor. Pop. Biol. 1977. V. 12. № 3. P. 263–285.
- Ohman M.D. Behavioral responses of zooplankton to predation // Bull. Mater. Sci. 1988. V. 43. P. 530–550.
- Parker G.A., Stuart R.A. Animal behavior as a strategy optimizer: evolution of resource assessment strategies and optimal emigration thresholds // Am. Nat. 1976. V. 110. P. 1055–1076.
- Pyke G. Optimal foraging theory: a critical review // Annu. Rev. Ecol. Syst. 1984. V. 15. P. 523–575.
- Rastetter E.B., King A.W., Cosby B.J. et al. Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems // Ecol. Appl. 1992. V. 2. P. 55–70.
- Reimchen T.E. Predators and evolution in threespine stickleback // Evolution of the threespine stickleback. Oxford: Oxford Univ. Press. 1994. P. 240–273.
- Rushbrook B.J., Barber I.A. Comparison of nest building by threespined sticklebacks Gasterosteus aculeatus from still and flowing waters // J. Fish Biol. V. 2008. V. 73. P. 746–752.
- Sharov A. The unknown Baranov. Forty years of polemics over the formal theory of the life of fishes // ICES J. Mar. Sci. 2020. V. 78. P. 743–754.
- Townsend C., Risebrow A. The influence of light level on the functional response of a zooplanktonivorous fish // Oecologia. 1982. V. 53. P. 293–295.
- Wasserman R.J., Mhairi A., Tatenda D. et al. Using functional responses to quantify interaction effects among predators // Funct. Ecol. 2016. V. 30. P. 1988–1998.
Supplementary files
