Findings of Pogonophores (Annelida: Siboglinidae) in the Kara Sea Associated with the Regions of Dissociation of Seafloor and Cryogenic Gas Hydrates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The discovery of new occurrences of pogonophores Siboglinum sp. and Nereilinum sp. from the St. Anna Trough (northwestern portion of the Kara Sea) has been described in this paper. Previously, occurrences of pogonophores (Crispabrachia yenisey and Galathealinum karaense) were reported in the southern part of the Kara Sea, in the estuary of the Yenisei River. Two areas in the Kara Sea where pogonophores were found coincide with the regions of distribution of two types of gas hydrates: oceanic seafloor gas hydrates, and gas hydrates associated with permafrost. Gas hydrate deposits in the permafrost are confined to the coastal regions of the Kara Sea. A methane flux forms in areas of dissociation of gas hydrates under the influence of river runoff. This methane source is vital for the survival of pogonophores. The existence of pogonophores in the St. Anna Trough indicates the presence of a methane flux associated with the inflow of Atlantic water, which causes dissociation of seafloor gas hydrates. The possible role of Arctic warming is apparent in both processes.

About the authors

V. V. Malakhov

Lomonosov Moscow State University

Email: mgantsevich@gmail.com
Russia, 119234,, Moscow

N. N. Rimskaya-Korsakova

Lomonosov Moscow State University

Email: mgantsevich@gmail.com
Russia, 119234,, Moscow

A. A. Osadchiev

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: mgantsevich@gmail.com
Russia, 117997, Moscow

I. P. Semiletov

Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: mgantsevich@gmail.com
Russia, 690041, Vladivostok

N. P. Karaseva

Lomonosov Moscow State University

Email: mgantsevich@gmail.com
Russia, 119234,, Moscow

M. M. Gantsevich

Lomonosov Moscow State University

Author for correspondence.
Email: mgantsevich@gmail.com
Russia, 119234,, Moscow

References

  1. Анисимов О.А., Забойкина Ю.Г., Кокорев В.А., Юрганов Л.Н. Возможные причины эмиссии метана на шельфе морей Восточной Арктики // Лёд и Снег. 2014. № 2(126). С. 69–81.
  2. Гинсбург Г.Д., Иванов В.Л., Соловьёв В.А. Гидраты природного газа в недрах Мирового океана. В кн.: Нефтегазоносность Мирового океана. Л. 1984. С. 141−158.
  3. Долгополова Е.Н. Закономерности движения вод и наносов в устье реки эстуарно-дельтового типа на примере р. Енисей // Водные Ресурсы. 2015. Т. 42. № 2. С. 175–185.
  4. Иванов А.В. Погонофоры // Фауна СССР. Новая сер. № 75. М., Л.: Изд-во АН СССР. 1960. 271 с.
  5. Каминский В.Д., Черных А.А., Медведева Т.Ю. и др. Карское море – перспективный полигон для изучения и освоения углеводородных ресурсов // Nef-teGaz.RU. Offshore. 2020. № 5(101). С. 82–89.
  6. Макагон Ю.Ф. Природные газовые гидраты: распространение, модели образования, ресурсы // Росс. хим. журн. 2003. Т. 47. № 3. С. 70–79.
  7. Римская-Корсакова Н.Н., Карасева Н.П., Кокарев В.Н. и др. Первая находка погонофор (Annelida, Siboglinidae) в Карском море совпадает с районом высокой концентрации метана // Докл. Российской академии наук. 2020. Т. 490. С. 101–104.
  8. Сергиенко В.И., Дударев О.В., Дмитревский Н.Н. и др. Деградация подводной мерзлоты и разрушение гидратов шельфа морей Восточной Арктики как возможная причина “метановой катастрофы”: некоторые результаты комплексных исследований 2011 года // Докл. Академии наук. 2012. Т. 445. № 3. С. 330–335.
  9. Соловьёв В.А., Гинзбург Г.Д. Арктические моря России. Условия газогидрадоносности и потенциально газогидратоносные акватории // Геология и полезные ископаемые шельфов России. Атлас. М.: Научный мир. 2003. Лист 1–31, 1–32.
  10. Соловьёв В.А., Гинзбург Г.Д., Телепнев Е.В., Михалюк Ю.Н. Криотермия и гидраты природного газа в недрах Северного Ледовитого океана. Л.: ПНО “Севморпуть”. 1987. 150 с.
  11. Трофимук А.А., Макогон Ю.Ф., Толкачев М.В. Газогидратные залежи − новый резерв энергетических ресурсов // Геология нефти и газа. 1981. № 10. С. 15–22.
  12. Хименков А.Н., Кошурников А.В., Станиловская Ю.В. Геосистемы газонасыщенных многолетнемерзлых пород // Арктика и Антарктика. 2020. № 2. С. 65–105.
  13. Черский Н.В., Царев В.П., Никитин С.П. Исследование и прогнозирование условий накопления ресурсов газа в газогидратных залежах. Якутск: Якутский филиал СО АН СССР. 1983. 156 с.
  14. Шахова Н.Е., Семилетов И.П., Бельчева Н.Н. Великие сибирские реки как источники метана на арктическом шельфе // Докл. Академии наук. 2007. Т. 414. № 5. С. 683–685.
  15. Aharon P., Fu B. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico // Geochimica et Cosmochimica Acta. 2000. V. 64. № 2. P. 233–246.
  16. Aharon P., Fu B. Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients // Chem. Geol. 2003. V. 195. P. 201–218.
  17. Bellefleur G., Riedel M., Brent T. et al. Implication of seismic attenuation for gas hydrate resource characterization, Mallik, Mackenzie Delta, Canada // J. Geophys. Res. 2007. V. 112. B10311. https://doi.org/10.1029/2007JB004976
  18. Bily C., Dick J.W.L. Naturally occurring gas hydrates in the Mackenzie delta, N.W.T.1 // Bull. Can. Petrol. Geol. 1974. V. 22. № 3. P. 340–352.
  19. Bird K.J., Charpentier R.R., Gautier D. et al. Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle // U.S. Geological Survey Fact Sheet. 2008. P. 2008–3049.
  20. Boetius A., Ravenschlag K., Schubert C. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane // Nature. 2000. V. 407. P. 623–626.
  21. Cavanaugh C.M., Gardiner S.L., Jones M.L. et al. Procaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible Chemoautotrophic symbionts // Science. 1981. V. 213. P. 340–342.
  22. Collet T.S., Dallimore S.R. Permafrost Associated Gas Hydrate, Natural Gas Hydrate // Oceanic and Permafrost Environments. Dordrecht: Kluwer Academic Publisher. 2003. P. 43–58.
  23. Dillon W.P., Max M.D. Oceanic Gas Hydrate, Natural Gas Hydrate // Oceanic and Permafrost Environments. Dordrecht: Kluwer Academic Publisher. 2003. P. 59–74.
  24. Dmitrenko I.A., Rudels B., Kirillov S.A. et al. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea // J. Geophys. Res. Oceans. 2015. V. 120. P. 5158–5178. https://doi.org/10.1002/2015JC010804
  25. Dmitrieva D., Romasheva N. Sustainable Development of Oil and Gas Potential of the Arctic and Its Shelf Zone: The Role of Innovations // J. Mar. Sci. Eng. 2020. V. 8. 1003. https://doi.org/10.3390/jmse8121003
  26. Felbeck H. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera) // Science. 1981. V. 213. P. 336–338.
  27. Gaidukova O., Misyura S., Strizhak P. Key Areas of Gas Hydrates Study: Review // Energies. 2022. V. 15. 1799. https://doi.org/10.3390/en15051799
  28. Gautier D.L., Bird K.J., Charpentier R.R. et al. Assessment of Undiscovered Oil and Gas in the Arctic // Science. 2009. V. 324. P. 1175–1179.
  29. Gebhardt A.C., Schoster F., Gaye-Haake B. et al. The turbi-dity maximum zone of the Yenisei River (Siberia) and its impact on organic and inorganic proxies // Estuarine, Coastal and Shelf Sci. 2005. V. 65. P. 61–73.
  30. Giustiniani M., Tinivella U., Jakobsson M., Rebesco M. Arctic Ocean Gas Hydrate Stability in a Changing Climate // J. Geol. Res. 2013. https://doi.org/10.1155/2013/783969
  31. Goffredi S.K., Johnson S.B., Vrijenhoek R.C. Genetic diversity and potential function of microbial symbionts associated with newly discovered species of Osedax polychaete Worms // Appl. Environ. Microbiol. 2007. V. 73. P. 2314–2323.
  32. Guo L., Semiletov I., Gustafsson Ö. et al. Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export // Global Biogeochem. Cycl. 2004. V. 18. GB1036. https://doi.org/10.1029/2003GB002087
  33. Harms I.H., Hübner U., Backhaus J.O. et al. Salt intrusions in Siberian river estuaries: observations and model experiments in Ob and Yenisei // Proc. Mar. Sci. 2003. V. 6. P. 27–46.
  34. Hilario A., Capa M., Dahlgren T.G. et al. New perspectives on the ecology and evolution of siboglinid tubeworms // PLoS One. 2011. V. 6. P. 1–14.
  35. Hu Y., Feng D., Liang Q. et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea // Deep-Sea Res. Part II. Top. Stud. Oceanogr. 2015. V. 122. P. 84–94.
  36. Karaseva N.P., Rimskaya-Korsakova N.N., Ekimova I.A. et al. A new genus of frenulates (Annelida: Siboglinidae) from shallow waters of the Yenisey River estuary, Kara Sea // Invert. Syst. 2021. V. 35. № 8. P. 857–875. https://doi.org/10.1071/IS20075
  37. Klauda J.B., Sandler S.I. Global Distribution of Methane Hydrate in Ocean Sediment // Energy & Fuels. 2005. V. 19. P. 459–470.
  38. Kvenvolden K.A. Methane hydrate – a major reservoir of carbon in the shallow geosphere? // Chem. Geol. 1988. V. 71. P. 41–51.
  39. Kvenvolden K.A., Ginsburg G.D., Soloviev V.A. Worldwide distribution of subaquatic gas hydrates // Geo-Marine Letters. 1993. V. 13. P. 32–40.
  40. Lien V.S., Trofimov A.G. Formation of Barents Sea Branch Water in the north-eastern Barents Sea // Polar Res. 2013. V. 32. 18905. https://doi.org/10.3402/polar.v32i0.18905
  41. Macdonald R.W., Yu Y. The Mackenzie Estuary of the Arctic Ocean // The Handbook of Environmental Che-mistry. Berlin Heidelberg: Springer-Verlag. 2006. V. 5. P. 91–120.
  42. Majorowicz J.A., Hannigan P.K. Natural Gas Hydrates in the Offshore Beaufort–Mackenzie Basin−Study of a Feasible Energy Source II // Natl. Resources Res. 2000. V. 9. № 3. P. 201–214.
  43. Max M.D., Johnson A.H., Dillon W.P. Natural Gas Hydrate − Arctic Ocean Deepwater Resource Potential // Sprin-gerBriefs in Energy. 2013. P. 1–113.
  44. Osadchiev A., Viting K., Frey D. et al. Structure and Circulation of Atlantic Water Masses in the St. Anna Trough in the Kara Sea // Frontiers in Marine Sci. 2022. V. 9. https://doi.org/10.3389/fmars.2022.915674
  45. Osadetz K.G., Morrell G.R., Dixon J. et al. Beaufort Sea–Mackenzie Delta basin: a review of conventional and nonconventional (gas hydrate) petroleum reserves and undiscovered resources // Geol. Survey of Canada. 2005. bull. 585. P. 1–19.
  46. Osadetz K.G., Chen Z. A re-evaluation of Beaufort Sea-Mackenzie Delta basin gas hydrate resource potential: petroleum system approaches to non-conventional gas resource appraisal and geologically-sourced methane flux // Bull. Canad. Petrol. Geol. 2010. V. 58. № 1. P. 56–71.
  47. Panayev A. Gas hydrates in the oceans // Int. Geol. Rev. 1987. V. 29. P. 569–602.
  48. Reagan M.T., Moridis G.J., Elliott S.M., Maltrud M. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes // J. Geoph. Res. 2011. V. 116. C09014. https://doi.org/10.1029/2011JC007189
  49. Romanovskii N.N., Eliseeva A.A., Gavrilov A.V. et al. The long-term dynamics of the permafrost and gas hydrate stability zone on rifts of the east Siberian arctic shelf (Report 1) // Earth’s Cryosphere. 2005. V. 9. № 4. P. 42–53.
  50. Ruppel C.D., Kessler J.D. The interaction of climate change and methane hydrates // Rev. Geophys. 2017. V. 55. P. 126–168.
  51. Schauer U., Loeng H., Rudels B. et al. Atlantic Water Flow Through the Barents and Kara Seas // Deep-Sea Res. Part I. 2002. V. 49. P. 2281–2298.
  52. Schmaljohann R., Flügel H.J. Methane-oxidizing bacteria in Pogonophora // Sarsia 1987. V. 72. P. 91–98.
  53. Shakhova N., Semiletov I., Panteleev G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle // Geophysical Res. Lett. 2005. V. 32. L09601. https://doi.org/10.1029/2005GL022751
  54. Shakhova N., Semiletov I., Leifer I. et al. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf // J. Geoph. Res. 2010. V. 115. C08007. https://doi.org/10.1029/2009JC005602
  55. Smirnov R.V., Zaitseva O.V., Vedenin A.A. A remarkable pogonophoran from a desalted shallow near the mouth of the Yenisey River in the Kara Sea, with the description of a new species of the genus Galathealinum (Annelida: Pogonophora: Frenulata) // Zoosystematica Rossica. 2020. V. 29. P. 138–154.
  56. Southward E.C. A new species of Galathealinum (Pogonophora) from the Canadian arctic // Canadian J. Zool. 1962. V. 40. P. 385–389.
  57. Southward A.J., Southward E.C., Dando P.R. et al. Chemoautotrophic function of bacterial symbionts in small Pogonophora // J. Mar. Biol. Ass. U.K. 1986. V. 66. P. 415–437.
  58. Spencer A.M., Embry A.F., Gautier D.L. et al. Chapter 1, An Overview of the Petroleum Geology of the Arctic, Geological Society. London: Memoirs. 2011. V. 35. P. 1–15.
  59. Xu T., Sun Y., Wang Z. et al. The Morphology, Mitogenome, Phylogenetic Position, and Symbiotic Bacteria of a New Species of Sclerolinum (Annelida: Siboglinidae) in the South China Sea // Front. Mar. Sci. 2022. V. 8. https://doi.org/10.3389/fmars.2021.793645

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (745KB)
3.

Download (401KB)
4.

Download (1MB)
5.

Download (384KB)

Copyright (c) 2023 В.В. Малахов, Н.Н. Римская-Корсакова, А.А. Осадчиев, И.П. Семилетов, Н.П. Карасева, М.М. Ганцевич

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies