Cluster Self-Organization of Intermetallic Systems: Cluster Precursors K4, K5, and K9 for the Self-Assembly of Zr72P36-oS108, Zr18Ni22-tI40, and Zr4Ni4-oS8 Crystal Structures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using computer methods (ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of Zr72P36-oS108 (a = 29.509 Å, b = 19.063 Å, c = 3.607 Å, V = 2029.49 Å3, Cmmm), Zr18Ni22-tI40 (a = b = 9.880 Å, c = 6.610 Å, V = 645.23 Å3, I4/m, and Zr4Ni4-oS8 (a = 3.271 Å, b = 9.931 Å, c = 4.107 Å, V = 133.43 Å3, Cmcm) crystal structures are carried out. For the crystal structure of Zr72P36-oS108, 40 variants of the cluster representation of the 3D atomic net with the number of structural units 5, 6, and 7 are established. Structural units in the form of a pyramid K5 = 0@PZr4, tetrahedron K4 = 0@Zr4, and supratetrahedron K9 = Zr(Zr4P4) of four connected tetrahedra. For the crystal structure of Zr18Ni22-tI40 also defined supratetrahedra K9 = Ni(Zr4Ni4) are defined. For the crystal structure of Zr4Ni4-oS8, the tetrahedral cluster precursor K4 = Zr2Ni2 is defined. The symmetry and topological code of the processes of self-assembly of 3D structures from cluster precursors is reconstructed in the following form: primary chain → layer → framework.

Sobre autores

V. Shevchenko

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Email: shevchenko@isc.nw.ru
199034, St. Petersburg, Russia

G. Ilyushin

Federal Research Center “Crystallography and Photonics”

Autor responsável pela correspondência
Email: gdilyushin@gmail.com
119333, Moscow, Russia

Bibliografia

  1. Villars P., Cenzual K. Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
  2. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST).
  3. Tergenius L.E., Nolaeng B.I., Lundstroem T. The crystal structure of Zr14P9 //Acta Chemica Scandinavica. Series A. 1981. V. 35. P. 693–699.
  4. Ahlzen P.J., Rundqvist S. Crystal structure refinement of Zr7P4 // Z. Kristallogr. 1989. V. 189. P. 149–153.
  5. Irani K.S., Gingerich K.A. Structural transformation of zirconium phosphide // J. Physics and Chemistry of Solids. 1963. V. 24. P. 1153–1158.
  6. Huber M., Deiseroth H.J. Crystal structure of zirconium diphosphide, ZrP2 // Z. Kristallogr. 1994. V. 209 P. 370–370.
  7. Ahlzen P.J., Rundqvist S. The crystal structure of Zr2P // Zeitschrift fuer Kristallographie. 1989. V. 189. P. 117–124.
  8. Ahlzen P.J., Andersson Y., Rundqvist S., Tellgren R. A neutron diffraction study of Zr3PD3 – x // J Less-Common Metals. 1990. V. 161. P. 269–278.
  9. Babizhetskyy V., Myakush O., Simon A., Kotur B. X-ray investigation of the Y–Zr–Ni system at 870 K // Intermetallics. 2013. V. 38. P. 44–48.
  10. Ning Jinliang, Zhang Xinyu, Qin Jiaqian, Liu Yong,Ma Mingzhen, Liu Riping. Phase competition mediated by composition and pressure in Zr2Cu1 – xNix system // J. Alloys Compd. 2015. V. 618. P. 73–77.
  11. Da J.M., Brochado Oliveira C., Harris I.R. Valency compensation in the Laves system, Ce (Co1 – xNix)2 // J. Mater. Sci. 1983. V. 18. P. 3649–3660.
  12. Ilyushin G.D. Symmetry and Topology Code of the Cluster Self-Assembly of Intermetallic Compounds of the Friauf Families Mg2Cu4 and Mg2Zn4 // Crystallography Reports. 2018. V. 63. P. 543–552.
  13. Bououdina M., Lambert-Andron B., Ouladdiaf B., Pairis S., Fruchart D.J. Structural investigation by neutron diffraction of equi-atomic Zr–Ti(V)–Ni(Co) compounds and their related hydrides // Alloys Compd. 2003. V. 356. P. 54–58.
  14. Glimois J.L., Becle C., Develey G., Moreau J.M. Crystal structure of the intermetallic compound Ni11Zr9 // J. Less-Common Metals. 1979. V. 64. P. 87–90.
  15. Panda S.C., Bhan S. Alloying behaviour of zirconium with other transition metals // Zeitschrift fuer Metallkunde. 1973. V. 64. P. 793–799.
  16. Kirkpatrick M.E., Larsen W.L. Phase relationships in the nickel-zirconium and nickel-hafnium alloy systems // Transactions of the American Society for Metals. 1961. V. 54. P. 580–590.
  17. Ilyushin G.D. New Cluster Precursors – K5 Pyramids and K4 Tetrahedra – for Self-Assembly of Crystal Structures of Mn4(ThMn4)(Mn4)-tI26, Mn4(CeCo4)(Co4)-tI26, and MoNi4-tI10 Families // Crystallography Reports. 2022. V. 67. Issue 7. P. 1088–1094.
  18. Shevchenko V.Y., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: Scale chemistry of intermetallics // Structural Chemistry. 2019. V. 30. P. 2015–2027.
  19. Ilyushin G.D. Intermetallic Compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
  20. Ilyushin G.D. Intermetallic Compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 7. P. 1095–1105.
  21. Ilyushin G.D. Intermetallic Compounds CsnMk (M = Na, K, Rb, Pt, Au, Hg, Te): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2022. V. 67. Issue 7. P. 1075–1087.
  22. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (150KB)
3.

Baixar (146KB)
4.

Baixar (234KB)
5.

Baixar (354KB)
6.

Baixar (84KB)
7.

Baixar (241KB)
8.

Baixar (345KB)
9.

Baixar (124KB)

Declaração de direitos autorais © В.Я. Шевченко, Г.Д. Илюшин, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».