Cluster Self-Organization of Intermetallic Systems: Cluster Precursors K3, K4, K5, K7, and K8 for the Self-Assembly of Lu66Te24-mC90, Te4Lu28-oC32, Lu3(TeLu3)Lu2-hP9, and Lu4Te4-cF8 Crystal Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

With the help of computer methods (ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of Lu4Te4-oF8 (Fm-3m, V = 211.0 Å3), Te4Lu28-oC32 (Cmcm, V = 908.3 Å3), Lu3(TeLu3)Lu2-hP9 (P-62m, V = 908.3 Å3), and Lu66Te24-mC90 (C12/m1, V = 2467.2 Å3) crystal structures are carried out. For the crystal structure of Lu4Te4-oF8, cluster precursors K8 = 0@Te4Lu4 with symmetry –43m; for Te4Lu28-oC32, tetrahedral cluster precursors K4 = 0@Lu4 and K4 = 0@TeLu3 with symmetry 2 and m; and for Lu3(TeLu3)Lu2, cluster precursors K7 = 0@Lu3(TeLu3) with symmetry 3m and spacers Lu are established. For the crystal structure of Lu66Te24-mC90, pyramid-shaped cluster precursors K5 = 0@Lu5 with symmetry 2, tetrahedra K4 = 0@Lu4 with symmetry 2, tetrahedra K4 = 0@TeLu3, and tetrahedra K4 = 0@Te2Lu2 are established, and rings K3 = 0@TeLu2 are involved in the formation of supraclusters-trimers. The symmetry and topological code of the processes of self-assembly of 3D structures from cluster precursors is reconstructed in the following form: primary chain → layer → framework.

About the authors

V. Ya. Shevchenko

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Email: shevchenko@isc.nw.ru
199034, St. Petersburg, Russia

G. D. Ilyushin


Federal Research Center “Crystallography and Photonics”

Author for correspondence.
Email: gdilyushin@gmail.com
119333, Moscow, Russia

References

  1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
  2. Villars P., Cenzual K. Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
  3. Cannon J.F., Hall H.T. High-pressure, high-temperature syntheses of selected lanthanide-tellurium compounds // Inorganic Chemistry. 1970. V. 9. P. 1639–1643.
  4. Flahaut Jean, Laruelle Pierre, Pardo Marie Paule, Guittard Micheline.Les sulfures, seleniures et tellurures L2X3 de terres rares, d’yttrium et descandium orthorhombiques du type Sc2S3 // Bulletin de la Societe Chimique de France. 1965. V. 1965. P. 1399–1404.
  5. Hulliger F., Hull G.W.Jr. Superconductivity in rocksalt-type compounds // Solid State Communications. 1970. V. 8. P. 1379–1382.
  6. Chen Ling, Corbett J.D. Lu8 Te and Lu7 Te. Novel substitutional derivatives of lutetium metal // J. Am. Chem. Soc. 2003. V. 125. P. 7794–7795.
  7. Chen Ling, Xia Shengqing, Corbett J.D. Metal-rich chalcogenides. Synthesis, structure and bonding of the layered Lu11Te4. Comparison with the similar Sc8Te3 and Ti11Se4 // Inorg. Chem. 2005. V. 44. P. 3057–3062.
  8. Miller A.E., Daane A.H. The High-Temperature Allotropy of Some Heavy Rare-Earth Metals // Transactions of the Metallurgical Society of Aime. 1964. V. 230. P. 568–572.
  9. White J.G., Dismukes J.P. The Crystal Structure of Scandium Sesquitelluride // Inorg. Chem. 1965. V. 4. P. 1760–1763
  10. Assoud A., Kleinke H. The sesquitelluride Sc2Te3 // Acta Crystallogr., Sect. E: Struct. Rep. Online 2006. V. 62. P. i17–i18.
  11. Chai P., Corbett J.D. Two new compounds, β-ScTe and Y3Au2, and a reassessment of Y2Au. // Acta Crystallogr., Sect. C. V. 67. P. i53–i55.
  12. Maggard P.A., Corbett J.D. Sc2Te: A novel example of condensed metal polyhedra in a metal-rich but relatively electron-poor compound // Angewandte Chemie (Edition international). 1997. V. 36. P. 1974–1976.
  13. Maggard P.A., Corbett J.D. The synthesis, structure, and bonding of Sc8Te3 and Y8Te3. Cooperative matrix and bonding effects in the solid state // Inorg. Chem. 1998. V. 37. P. 814–820.
  14. Gupta S., Maggard P.A., Corbett J.D. A bismuth-stabilized metal-rich telluride Lu9 Bi ~ 1.0 Te ~ 1.0 -Synthesis and characterization // European J. Inorganic Chemistry. 2010. V. 18. P. 2620–2625.
  15. Pardo M.P., Flahaut J. Les tellurures superieurs des terres rares, de formules L2Te5 et LTe3 // Bulletin de la Societe Chimique de France. 1967. V. 1967. P. 3658–3664.
  16. Brixner L.H. Structure and electrical properties of some new rare earth arsenides, antimonides and tellurides // J. Inorganic and Nuclear Chemistry. 1960. V. 15. P. 199–201.
  17. Castro-Castro L.M., Chen Ling, Corbett J.D. Condensed rare-earth metal-rich tellurides. Extension of layered (Sc6PdTe2)-type compounds to yttrium and lutetium analogues and to Y7Te2, the limiting binary member // J. Solid State Chem. 2007. V. 180. P. 3172–3179.
  18. Weirich T.E., Ramlau R., Simon A., Hovmoeller S., Zou X.-D. A crystal structure determined to 0.02 Å accuracy by electron crystallography // Nature (London). 1996. V. 382. P. 144–146.
  19. Shevchenko V.Y., Blatov V.A., Ilyushin G.D. Structural Chemistry of Intermetallic Compounds: Geometric and Topological Analysis; Cluster Precursors K4, K6, and K21; and Self-Assembly of Crystal Structure Cs2Hg2-aP8, Cs2Hg4-oI12, and Cs10Hg38-tI48 // Glass Physics and Chemistry. 2022. V. 48. P. 155–162.
  20. Ilyushin G.D. Intermetallic compounds LikMn (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and topological analysis, tetrahedral cluster precursors, and self-assembly of crystal structures // Crystallography Reports, 2020.V. 65. P. 202–210.
  21. Shevchenko V.Y., Blatov V.A., Ilyushin G.D. Cluster self-organization of intermetallic systems: New two-layer nanocluster precursors K64 = 0@8(Sn4Ba4)@56(Na4Sn52 and K47 = Na@Sn16@Na30 in the crystal structure of Na52Ba4Sn80-cF540 // Glass Physics and Chemistry. 2020. V. 46. P. 448–454.
  22. Ilyushin G.D. Intermetallic Compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
  23. Ilyushin G.D. Intermetallic Compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 7. P. 1095–1105.
  24. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (234KB)
3.

Download (47KB)
4.

Download (299KB)
5.

Download (255KB)
6.

Download (290KB)

Copyright (c) 2023 В.Я. Шевченко, Г.Д. Илюшин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies