Mathematical modeling of turbulent mixing in gas systems with a chevron contact boundary using NUT3D, BIC3D, EGAK, and MIMOSA numerical codes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents computational and experimental studies of the evolution of turbulent mixing in three-layer gas systems with the development of hydrodynamic instabilities, in particular Richtmyer-Meshkov and Kelvin-Helmholtz, under the action of shock waves. One of the contact boundaries of the gases was flat, the other with a break in the form of a chevron. Numerical calculations are performed both without initial perturbations of the contact boundaries, and in the presence of perturbations. It is shown that the roughness of the contact boundary significantly affects the width of the mixing zone.

全文:

受限制的访问

作者简介

M. Bragin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: pkuchugov@gmail.com
俄罗斯联邦, Miusskaya pl. 4, Moscow, 125047

N. Zmitrenko

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: pkuchugov@gmail.com
俄罗斯联邦, Miusskaya pl. 4, Moscow, 125047

V. Zmushko

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: pkuchugov@gmail.com
俄罗斯联邦, pr. Mira 37, Sarov, Nizhni Novgorod oblast, 607188

P. Kuchugov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: pkuchugov@gmail.com
俄罗斯联邦, Miusskaya pl. 4, Moscow, 125047

E. Levkina

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: pkuchugov@gmail.com
俄罗斯联邦, pr. Mira 37, Sarov, Nizhni Novgorod oblast, 607188

K. Anisiforov

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: pkuchugov@gmail.com
俄罗斯联邦, pr. Mira 37, Sarov, Nizhni Novgorod oblast, 607188

N. Nevmerzhitskiy

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: pkuchugov@gmail.com
俄罗斯联邦, pr. Mira 37, Sarov, Nizhni Novgorod oblast, 607188

A. Razin

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: pkuchugov@gmail.com
俄罗斯联邦, pr. Mira 37, Sarov, Nizhni Novgorod oblast, 607188

E. Sen’kovskiy

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: pkuchugov@gmail.com
俄罗斯联邦, pr. Mira 37, Sarov, Nizhni Novgorod oblast, 607188

V. Statsenko

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: pkuchugov@gmail.com
俄罗斯联邦, pr. Mira 37, Sarov, Nizhni Novgorod oblast, 607188

N. Tishkin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: pkuchugov@gmail.com
俄罗斯联邦, Miusskaya pl. 4, Moscow, 125047

Yu. Tret’yachenko

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: pkuchugov@gmail.com
俄罗斯联邦, pr. Mira 37, Sarov, Nizhni Novgorod oblast, 607188

Yu. Yanilkin

Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics

Email: pkuchugov@gmail.com
俄罗斯联邦, pr. Mira 37, Sarov, Nizhni Novgorod oblast, 607188

参考

  1. Richtmyer R.D. Taylor instability in shock acceleration of compressed fluids, Commun. Pure Appl. Math. 13, 297, 1960.
  2. Meshkov E.E. Instability of the interface between two gases, accelerated by a shock wave, Izv. Academy of Sciences of the USSR, Mechanics of Liquid and Gas, 5, 151–158, 1969.
  3. Helmholtz H.L.F. Uber discontinuilisсh Flussigkeits-Bewegungen. Monatsberichte Konigl. Preus. Akad. Wiss. Berlin. 1868. P. 215.
  4. Taylor G.I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc.Roy.Soc., 1950. V.A201. Р.192.
  5. Bel’kov S.A., Bondarenko S.V., Demchenko N.N. et al. Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by multi-beam megajoule laser, PPCF, 61, 025011, 2019.
  6. Nevmerzhitsky N.V. Hydrodynamic instabilities and turbulent mixing of substances. Laboratory modeling. Monograph / Ed. Doctor of Technical Sciences A.L. Mikhailova. – Sarov: FSUE “RFNC-VNIIEF”. 2018. P. 246.
  7. Luo X., Guan B., Si T. et al. Richtmyer-Meshkov instability of a three-dimensional SF6-air interface with a minimum-surface feature, Phys. Rev E, 93, 013101, 2016.
  8. Brouillette M. The Richtmyer-Meshkov Instability, Annu. Rev. Fluid Mech., 34, 445, 2002.
  9. Nevmerzhitsky N.V., Razin A.N., Trutnev Yu.A. and others. Study of the development of turbulent mixing in three-layer gas systems with an inclined contact boundary, VANT. Series: theoretical and applied physics, 2, 12–17, 2008.
  10. Kozlov V.I., Razin A.I., Shaporenko E.V. and others. Results of modeling gas-dynamic experiments on turbulent mixing in two-dimensional flows using the CORONA method, VANT. Series: theoretical and applied physics, 1, 31–38, 2009.
  11. Razin A.N. Interaction of a shock wave with an inclined contact boundary, VANT. Series: theoretical and applied physics, 2, 3–11, 2008.
  12. Henderson L.F. On the refraction of shock waves, J. Fluid Mech., 198, 365-386, 1989.
  13. Hahn M., Drikakis D., Youngs D.L. et al. Richtmyer-Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshoked flow, Phys. Fluids, 23, 046101, 2011.
  14. Razin A.N. Modeling of instability and turbulent mixing in layered systems, Sarov, FSUE RFNC VNIIEF, 414, 2010.
  15. Zmushko V.V., Razin A.N., Sinelnikova A.A. The influence of the initial roughness of contact boundaries on the development of instability after the passage of a shock wave, Applied Mechanics and Technical Physics, 63, 3, 34–42, 2022.
  16. Bodrov E.V., Zmushko V.V., Nevmerzhitsky N.V. and others. Computational and experimental study of the development of turbulent mixing in a gas layer during the passage of a shock wave, Izvestiya RAS. Mechanics of Liquid and Gas, 3, 54–62, 2018.
  17. Smith A.V., Holder D.A., Barton C.J. et al. Shock tube experiments on Richtmyer-Meshkov instability across a chevron profiled interface, Proceedings of the 8th IWPCTM, 2001.
  18. Holder D.A., Barton C.J. Shock tube Richtmyer-Meshkov experiments: Inverse chevron and half height, Proceeding of the 9th IWPCTM, 2004.
  19. Holder D.A., Smith A.V., Barton C.J. et al. Shock-tube experiments on Richtmyer-Meshkov instability growth using an enlarged double-bump perturbation, Laser and Particle Beams, 23, 411, 2003.
  20. Ladonkina M.E. Numerical modeling of turbulent mixing using high-performance systems, 2005, Institute of Mathematical Modeling of the Russian Academy of Sciences.
  21. Kuchugov P.A. Dynamics of turbulent mixing processes in laser targets, 2014, Institute of Applied Mathematics named after. M.V. Keldysh RAS.
  22. Kuchugov P.A. Modeling the implosion of a thermonuclear target on hybrid computing systems, Collection of proceedings of the international scientific conference «Parallel Computing Technologies 2017», Kazan, Republic of Tatarstan, April 3-7, 2017, 399-409, 2017.
  23. Bragin M.D., Rogov B.V. On the exact spatial splitting of a multidimensional scalar quasilinear hyperbolic conservation law. Dokl. AN. 2016. T. 469. No. 2. P. 143–147.
  24. Bragin M.D. Implicit-explicit compact schemes for hyperbolic systems of conservation laws. Math. modeling. 2022. T. 34. No. 6. P. 3-21.
  25. Bragin M.D., Rogov B.V. Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations. Appl. Numer. Math. 2020. V. 151. P. 229–245.
  26. Bragin M.D. The influence of monotonization on the spectral resolution of bicompact schemes in the Taylor-Green inviscid vortex problem. J. Comput. math. and math. physical 2022. T. 62. No. 4. P. 625–641.
  27. Groom M., Thornber B. The influence of the initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer-Meshkov instability, Phys. D, 407, 132463, 2020.
  28. Youngs D.L. Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Phys. Fluids A, 3, 1312, 1991.
  29. Tishkin V.F., Nikishin V.V., Popov I.V., Favorsky A.P. Difference schemes of three-dimensional gas dynamics for problems on the development of Richtmyer-Meshkov instability, Mat. model., 7, 5, 15–25, 1995.
  30. Vyaznikov K.V., Tishkin V.F., Favorsky A.P. Construction of monotonic difference schemes of higher order of approximation for systems of linear differential equations with constant coefficients of hyperbolic type, Mat. model., 1, 5, 95–120, 1989.
  31. Toro E.F., Spruce M., Speares W. Restoration of the Contact Surface in the HLL-Riemann Solver, Shock Waves, 4, 25–34, 1994.
  32. Samarsky A.A., Sobol I.M. Examples of numerical calculation of temperature waves, ZhVMiMF, 3, 4, 702–719, 1963.
  33. Avdoshina E.V., Bondarenko Yu.A., Gorbunov A.A., Dmitrieva Yu.S., Naumov A.O., Pronevich S.N., Rudko N.M., Tikhomirov B.P. Study of the accuracy of various methods for averaging the thermal conductivity coefficient on the side of the integration cell in the numerical solution of the heat equation, VANT, ser. Mathematical modeling of physical processes, 3, 32, 2014.
  34. Kolganov A.S. Automation of parallelization of Fortran programs for heterogeneous clusters: Abstract of the dissertation of Ph.D., M.: 2020. 22 p.
  35. Kataev N. Application of the LLVM Compiler Infrastructure to the Program Analysis in SAPFOR. In: Voevodin V., Sobolev S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-05807-4_41
  36. Bakhtin V.A., Krukov V.A. DVM-Approach to the Automation of the Development of Parallel Programs for Clusters // Programming and Computer Software. 2019. Vol. 45. № 3. P. 121–132.
  37. Yanilkin Yu.V., Belyaev S.P., Bondarenko Yu.A., Gavrilova E.S., Goncharov E.A., Gorbenko A.D., Gorodnichev A.V., Gubkov E.V., Guzhova A.R., Degtyarenko L.I., Zharova G.V., Kolobyanin V.Yu., Sofronov V.N., Stadnik A.L., Khovrin N.A., Chernyshova O.N., Chistyakova I .N., Shemyakov V.N. Euler numerical methods EGAC and TREC for modeling multidimensional flows of a multicomponent medium. Proceedings of RFNC-VNIIEF. Scientific research publication, Sarov: RFNC-VNIIEF, 200, Vol. 12, P. 54–65.
  38. Yanilkin Yu.V. Models for closing the equations of Lagrangian gas dynamics and elastic-plasticity in multicomponent cells. Part 1. Isotropic models // VANT, ser. MMFP, Vol. 3, 2017, P. 3–21.
  39. Yanilkin Yu.V., Kolobyanin V.Yu., Chistyakova I.N., Eguzhova M.Yu. Application of the PPM method in calculations using the EGAC and TREC methods // VANT, ser. MMFP, 2005, Vol. 4, P. 69–79.
  40. Bakhrakh S.M., Glagoleva Yu.P., Samigulin M.S., Frolov V.D., Yanenko N.N., Yanilkin Yu.V. Calculation of gas-dynamic flows based on the concentration method // DAN USSR, 1981, Vol. 257, No. 3, P. 566–569.
  41. Zmushko V.V., Pletenev F.A., Saraev V.A., Sofronov I.D. Methodology for solving three-dimensional gas dynamics equations in mixed Lagrangian-Eulerian coordinates // VANT. Ser. Methods and programs for numerical solution of problems of mathematical physics. 1988. Issue 1. P. 22–27.
  42. Sofronov I.D., Afanasyeva E.A., Vinokurov O.A. and others. Complex of MIMOZA programs for solving multidimensional problems of continuum mechanics on the Elbrus-2 computer // Vopr. atom. science and technology. Ser. Mathematical modeling of physical processes. 1990. Issue 2. P. 3–9.
  43. Zmushko V.V. Computation of convective flows and their realization in MIMOZA code // International Workshop “New Models of Numerical Codes for Shock Wave Processes in Condensed Media” / Oxford / September 15–19. 1997.
  44. Ladagin V.K., Pastushenko A.M. On one scheme for calculating gas-dynamic flows // Numerical methods of continuum mechanics. 1977. T.8. No. 2. P.66-72.
  45. Benson D.J. Volume of fluid interface reconstruction methods for multi-material problems. // Applied Mechanics Review 55(2). 2002. С. 151–165.
  46. Dyadechko V., Shashkov M. Multi-material interface reconstruction from the moment data. Technical report LA-UR-07-0656, LANL, 2006.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The scheme of the experiments. a) a diagram of the shock tube; b) a photograph of the measuring section with a 5×5 mm 3D grid; D1, D2 - timers; KG1, KG2 – contact boundaries

下载 (424KB)
3. Fig. 2. The motion picture of the flow in experiment No. 1 with an air-helium-air layer (M = 1.25). 1 — helium; 2 — air; 3 – shock wave; 4 – KG2; 5 — ZTP1 on KG1; 6 — ZTP2 on KG2; time is counted from the arrival of the incident shock wave on KG1

下载 (260KB)
4. Fig. 3. The motion picture of the flow in experiments with the air-SF6-air layer. a) experience No. 6 with a 3D grid, M = 1.2; b) experience No. 25 without a grid, M = 1.4. 1 – SF6; 2 – air; 3 – shock wave; 4 – KG2; 5 – ZTP1 on KG1; 6 – ZTP2 on KG2; 7 – wave reflected from a rigid wall; time is counted from the arrival of the incident shock wave on KG1

下载 (506KB)
5. Fig. 4. Distribution of the solution from the horizontal layer (np=4, r =2).

下载 (102KB)
6. Fig. 5-1 (beginning).

下载 (457KB)
7. Fig. 5-2 (continued).

下载 (474KB)
8. Fig. 5-3 (continued).

下载 (490KB)
9. Fig. 5-4 (continued).

下载 (497KB)
10. Fig. 5-5 (end). Experimental photographs (a) and numerical schlier

下载 (481KB)
11. Fig. 6. Numerical Schlieren images at various points in time: (a) NUT3D, (b) BIC3D.

下载 (499KB)
12. Fig. 7. Flow patterns: calculations t = 491, experiment with a 3D grid t = 491.6, experiment with a 2D grid t = 481.

下载 (608KB)
13. Fig. 8. Flow patterns: calculations t = 571, experiment with a 3D grid t = 571.6, experiment with a 2D grid t = 565.1.

下载 (663KB)
14. Fig. 9. Flow patterns: calculations t = 732, experiment with a 3D grid t = 731.6, experiment with a 2D grid t = 732.1.

下载 (1MB)
15. Fig. 10. Flow patterns: calculations t = 812, experiment with a 3D grid t = 811.6, experiment with a 2D grid t = 815.6.

下载 (1MB)
16. Fig. 11. Flow patterns: calculations t = 1000, experiment with a 3D grid t = 1071.6 (there is no data for the experiment with a 2D grid).

下载 (1MB)
17. Fig. 12. Comparison of the calculated and experimental dynamics of the boundaries and mixing zones, air-helium-air layer, t ≈530 microseconds.

下载 (408KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##