IMPLEMENTATION OF GEOMETRIC ALGEBRA IN COMPUTER ALGEBRA SYSTEMS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For describing specialized mathematical structures, it is preferable to use a special formalism rather than a general one. However, tradition often prevails in this case. For example, to describe rotations in the three-dimensional space or to describe motion in the Galilean or Minkowski spaces, vector (or tensor) formalism, rather than more specialized formalisms of Clifford algebra representations, is often used. This approach is historically justified. The application of specialized formalisms, such as spinors or quaternions, has not become a mainstream in science, but it has taken its place in solving practical and engineering problems. It should also be noted that all operations in theoretical problems are carried out precisely with symbolic data, and manipulations with multidimensional geometric objects require a large number of operations with the same objects. And it is in such problems that computer algebra is most powerful. In this paper, we want to draw attention to one of these specialized formalisms—the formalism of geometric algebra. Namely, it is proposed to consider options for the implementation of geometric algebra in the framework of the symbolic
computation paradigm.

作者简介

M. GEVORKYAN

Peoples’ Friendship University of Russia (RUDN University)

Email: gevorkyan-mn@rudn.ru
Moscow, Russia

A. KOROL'KOVA

Peoples’ Friendship University of Russia (RUDN University)

Email: korolkova-av@rudn.ru
Moscow, Russia

D. KULYABOV

Peoples’ Friendship University of Russia (RUDN University); Joint Institute for Nuclear Research

Email: kulyabov-ds@rudn.ru
Moscow, Russia; Dubna, Moscow oblast, Russia

A. DEMIDOVA

Peoples’ Friendship University of Russia (RUDN University)

Email: demidova-av@rudn.ru
Moscow, Russia

T. Velieva

Peoples’ Friendship University of Russia (RUDN University)

编辑信件的主要联系方式.
Email: velieva-tr@rudn.ru
Moscow, Russia

参考

  1. Grassmann H.G. Die mechanik nach den principien der ausdehnungslehre // Mathematische Annalen. 1877. Bd. 12. S. 222–240.
  2. Kuipers J.B. Quaternions and rotation sequences. Princeton University Press, 1999.
  3. Clifford W.K. Applications of grassmann’s extensive algebra // American Journal of Mathematics. 1878. V. 1. № 4. P. 350–358.
  4. Казанова Г. Векторная алгебра / Под ред. М.К. Поливанова. Современная математика. М.: Мир, 1979.
  5. Hestenes D., Sobczyk G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Fundamental Theories of Physics. Springer Netherlands, 1987. ISBN: 9789027725615.
  6. Delanghe R., Sommen F., Soucek V. Clifford algebra and spinor-valued functions. Mathematics and Its Applications. Kluwer Academic Publishers, 1992.
  7. Doran C., Lasenby A. Geometric Algebra for Physicists. Morgan Kaufmann Publishers, 2003. ISBN: 9780123694652.
  8. Dorst L., Fontijne D., Mann S. Geometric algebra for computer science. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, 2007. ISBN: 0123694655.
  9. Vince J. Geometric algebra for computer graphics. Springer-Verlag, 2008. ISBN: 9781846289965.
  10. Lengyel E. Mathematics. Lincoln, California: Terathon Software LLC, 2016. V. 1. ISBN: 9780985811747.
  11. Kanatani K. Understanding Geometric Algebra. Taylor and Francis Group/CRC, 2015. ISBN: 9781482259513.
  12. ten Bosch M. Let’s remove quaternions from every 3d engine. URL: https://marctenbosch.com/quaternions/.
  13. Perwa C.B.U. Geometric Algebra with Applications in Engineering. Geometry and Computing. Springer-Verlag Berlin Heidelberg, 2009. ISBN: 9783540890676.
  14. Joot P. Geometric Algebra for Electrical Engineers: Multivector Electromagnetism. CreateSpace Independent Publishing Platform, 2019. ISBN: 9781987598971.
  15. Winitzki S. Linear Algebra via Exterior Products. 2020. URL: https://github.com/winitzki/linear-algebra-book.
  16. Chappell J.M., Drake S.P., Seidel C.L. et al. Geometric algebra for electrical and electronic engineers // Proceedings of the IEEE. 2014. V. 102. № 9. P. 1340–1363.
  17. Galgebra – symbolic geometric algebra/calculus package for sympy. 2022. URL: https://galgebra.readthedocs.io/en/latest/index.html.
  18. Геворкян М.Н., Демидова А.В., Велиева Т.Р. и др. Аналитико-численная реализация алгебры поливекторов на языке julia // Программирование. 2022. № 1. С. 54–64.
  19. Sympy. 2022. URL: http://www.sympy.org/ru/index.html.
  20. Кострикин А.И. Линейная алгебра. М.: МЦНМО, 2009. Т. 2. ISBN: 9785940574545.
  21. Bivector.net: Geometric algebra resources. 2022. URL: https://bivector.net/index.html.
  22. Hadfield H., Wieser E., Arsenovic A. et al. pygae/clifford. 2022.
  23. De Keninck S. ganja.js. 2020.
  24. Grassmann.jl. 2022. URL: https://github.com/chakravala/Grassmann.jl.
  25. Breuils S., Nozick V., Fuchs L. Garamon: A geometric algebra library generator // Advances in Applied Clifford Algebras. 2019. 7. V. 29. № 4. P. 69.
  26. Gunn C.G., Keninck S.D. Geometric algebra and computer graphics // ACM SIGGRAPH 2019. Courses. ACM, 2019. 7.
  27. Colapinto P. Versor: Spatial computing with conformal geometric algebra. 2011. Available at http://versor.mat.ucsb.edu. URL: http://versor.mat.ucsb.edu.
  28. Кулябов Д.С., Королькова А.В. Компьютерная алгебра на julia // Программирование. 2021. № 2. С. 44–50. 2108.12301.
  29. Gevorkyan M.N., Kulyabov D.S., Korolkova A.V. et al. Symbolic implementation of multivector algebra in julia language // Computer algebra: 4th International Conference Materials. LCC MAKS Press, 2021. 5. P. 57–60.
  30. Kulyabov D.S., Korolkova A.V., Sevastianov L.A. Complex numbers for relativistic operations. MDPI AG, 2021. 12.
  31. Зи Э. Квантовая теория поля в двух словах. Регулярная и хаотическая динамика, 2009. ISBN: 978-5-93972-770-9.
  32. Kulyabov D.S., Korolkova A.V., Gevorkyan M.N. Hyperbolic numbers as einstein numbers // Journal of Physics: Conference Series. 2020. 5. V. 1557. P. 012027.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (52KB)

版权所有 © М.Н. Геворкян, А.В. Королькова, Д.С. Кулябов, А.В. Демидова, Т.Р. Велиева, 2023

##common.cookie##