AUTOMATED METHOD FOR OPTIMUM SCALE SEARCH WHEN USING TRAINED MODELS FOR HISTOLOGICAL IMAGE ANALYSIS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Preparation of input data for an artificial neural network is a key step to achieve a high accuracy of its predictions. It is well known that convolutional neural models have low invariance to changes in the scale of input data. For instance, processing multiscale whole-slide histological images by convolutional neural networks naturally poses a problem of choosing an optimal processing scale. In this paper, this problem is solved by iterative analysis of distances to a separating hyperplane that are generated by a convolutional classifier at different input scales. The proposed method is tested on the DenseNet121 deep architecture pretrained on PATH-DT-MSU data, which implements patch classification of whole-slide histological images.

About the authors

M. A. PENKIN

Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, Moscow State University

Email: penkin97@gmail.com
Moscow, Russia

A. V. KHVOSTIKOV

Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, Moscow State University

Email: khvostikov@cs.msu.ru
Moscow, Russia

A. S. KRYLOV

Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, Moscow State University

Author for correspondence.
Email: kryl@cs.msu.ru
Moscow, Russia

References

  1. Park S., Pantanowitz L., Parwani A.V. Digital imaging in pathology // Clinics in laboratory medicine. 2012. M. 32. № 4. C. 557–584.
  2. Pantanowitz L., Valenstein P.N., Evans A.J., Kaplan K.J., Pfeifer J.D., Wilbur D.C., Collins L.C., Colgan T.J. Review of the current state of whole slide imaging in pathology // Journal of pathology informatics. 2012. V. 2. № 1. P. 36.
  3. Saco A., Bombi J.A., Garcia A., RamГrez J., Ordi J. Current status of whole-slide imaging in education // Pathobiology. 2016. V. 83. № 2–3. P. 79–88.
  4. Farahani N., Parwani A.V., Pantanowitz L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives // Pathol Lab Med Int. 2015. V. 7. № 23–33. P. 4321.
  5. Rojo M.G., GarcГa G.B., Mateos C.P., GarcГa J.G., Vicente M.C. Critical comparison of 31 commercially available digital slide systems in pathology // International journal of surgical pathology. 2006. V. 14. № 4. P. 285–305.
  6. Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation // In International Conference on Medical image computing and computer-assisted intervention. 2015. P. 234–241.
  7. Khvostikov A., Krylov A.S., Mikhailov I., Malkov P. CNN Assisted Hybrid Algorithm for Medical Images Segmentation // In Proceedings of the 2020 5th International Conference on Biomedical Signal and Image Processing. 2020. P. 14–19.
  8. Getmanskaya A.A., Sokolov N.A., Turlapov V.E. Multiclass U-Net Segmentation of Brain Electron Microscopy Data Using Original and Semi-Synthetic Training Datasets // Programming and Computer Software. 2022. V. 48. № 3. P. 164–171.
  9. Gong Y., Wang L., Guo R., Lazebnik S. Multi-scale orderless pooling of deep convolutional activation features // In European conference on computer vision. 2014. P. 392–407.
  10. Khvostikov A.V., Krylov A.S., Mikhailov I.A., Malkov P.G. Visualization of Whole Slide Histological Images with Automatic Tissue Type Recognition // Pattern Recognition and Image Analysis. 2022. V. 32. № 3. P. 483–488.
  11. Huang G., Liu Z., Van Der Maaten L., Weinberger K.Q. Densely connected convolutional networks // In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. P. 4700–4708.
  12. Kingma D.P., Ba J. Adam: A method for stochastic optimization // arXiv preprint arXiv:1412.6980. 2014.
  13. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition // Proceedings of the CVPR IEEE Conference. 2016. P. 770–778.
  14. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition // arXiv preprint arXiv:1409.1556. 2014.
  15. Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A. Going deeper with convolutions // In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. P. 1–9.
  16. Penkin M.A., Khvostikov A.V., Krylov A.S. Optimal Input Scale Transformation Search for Deep Classification Neural Networks // In Graphicon-Conference on Computer Graphics and Vision. 2022. V. 32. P. 668–677.
  17. Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks // Communications of the ACM. 2017. V. 60. № 6. P. 84–90.
  18. Deng J., Dong W., Socher R., Li L.J., Li K., Fei-Fei L. Imagenet: A large-scale hierarchical image database // In 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009. P. 248–255.
  19. Bolme D.S., Beveridge J.R., Draper B.A., Lui Y.M. Visual object tracking using adaptive correlation filters // IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010. P. 2544–2550.
  20. Mohri M., Rostamizadeh A., Talwalkar A. Foundations of machine learning. MIT Press, 2018. 475 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (646KB)
3.

Download (1MB)
4.

Download (1MB)
5.

Download (1MB)
6.

Download (17KB)

Copyright (c) 2023 М.А. Пенкин, А.В. Хвостиков, А.С. Крылов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies