Heterometallic Carboxylate Complexes with {Co2Ln} and {Co2Li2} Metal Cores: Synthesis, Structures, and Magnetic Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of studying the heterometallic trinuclear {CoLn} and tetranuclear {CoLi2} carboxylate coordination compounds are systematized. The methods of the syntheses are discussed, and the structures and magnetic properties are considered

About the authors

I. K. Rubtsova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: sanikol@igic.ras.ru
Москва, Россия,  

S. A. Nikolaevskii

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: sanikol@igic.ras.ru
Россия, Москва

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: sanikol@igic.ras.ru
Россия, Москва

M. A. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: sanikol@igic.ras.ru
Россия, Москва

References

  1. Yang D., Chen Y., Su Z. et al. // Coord. Chem. Rev. 2021. V. 428. P. 213619.
  2. Rice A.M., Leith G.A., Ejegbavwo O.A. et al. // ACS Energy Lett. 2019. V. 4. № 8. P. 1938.
  3. Lamiel C., Hussain I., Rabiee H. et al. // Coord. Chem. Rev. 2023. V. 480. P. 215030.
  4. Shen J.-Q., Liao P.-Q., Zhou D.-D. et al. // J. Am. Chem. Soc. 2017. V. 139. № 5. P. 1778.
  5. Rosado Piquer L., Sañudo E.C. // Dalton Trans. 2015. V. 44. № 19. P. 8771.
  6. Dey A., Acharya J., Chandrasekhar V. // Chem. Asian J. 2019. V. 14. № 24. P. 4433.
  7. Wang J. Feng M., Akhtar M.N., Tong M.-L. // Coord. Chem. Rev. 2019. V. 387. P. 129.
  8. Monteiro B., Coutinho J.T., Pereira L.C.J. Lanthanide-Based Multifunctional Materials. Elsevier, 2018. P. 233.
  9. Sidorov A.A., Kiskin M.A., Aleksandrov G.G. et al. // Russ. J. Coord. Chem. 2016. V. 42. № 10. P. 621.
  10. Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093.
  11. Andruh M., Costes J.-P., Diaz C., Gao S. // Inorg. Chem. 2009. V. 48. № 8. P. 3342.
  12. Andruh M. // Dalton Trans. 2015. V. 44. № 38. P. 16633.
  13. Darago L.E., Boshart M.D., Nguyen B.D. et al. // J. Am. Chem. Soc. 2021. V. 143. № 22. P. 8465.
  14. Zheng Y.-Z., Evangelisti M., Tuna F., Winpenny R.E.P. // J. Am. Chem. Soc. 2012. V. 134. № 2. P. 1057.
  15. Zheng Y.-Z., Evangelisti M., Winpenny R.E.P. // Chem. Sci. 2011. V. 2. № 1. P. 99.
  16. Peng J.-B., Zhang Q.-C., Kong X.-J. et al. // J. Am. Chem. Soc. 2012. V. 134. № 7. P. 3314.
  17. Le Roy J.J., Cremers J., Thomlinson I.A. et al. // Chem. Sci. 2018. V. 9. № 45. P. 8474.
  18. Elias J.S., Risch M., Giordano L. et al. // J. Am. Chem. Soc. 2014. V. 136. № 49. P. 17193.
  19. Zhang H., Ma J., Chen D. et al. // J. Mater. Chem. A. 2014. V. 2. № 48. P. 20450.
  20. Kumar K., Chorazy S., Nakabayashi K. et al. // J. Mater. Chem. C. 2018. V. 6. № 31. P. 8372.
  21. Wang J., Chorazy S., Nakabayashi K. et al. // J. Mater. Chem. C. 2018. V. 6. № 3. P. 473.
  22. Xin Y., Wang J., Zychowicz M. et al. // J. Am. Chem. Soc. 2019. V. 141. № 45. P. 18211.
  23. Zhu M., Zhang H., Ran G. et al. // J. Am. Chem. Soc. 2021. V. 143. № 19. P. 7541.
  24. Hong S., Pfaff F.F., Kwon E. et al. // Angew. Chem. Int. Ed. 2014. V. 53. № 39. P. 10403.
  25. Hong S., Pfaff F.F., Kwon E. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 36. P. 10630.
  26. King E.R., Betley T.A. // J. Am. Chem. Soc. 2009. V. 131. № 40. P. 14374.
  27. Andrez J., Guidalb V., Scopelliti R. et al. // J. Am. Chem. Soc. 2017. V. 139. № 25. P. 8628.
  28. Wei Z., Han H., Filatov A.S., Dikarev E.V. // Chem. Sci. 2014. V. 5. № 2. P. 813.
  29. Tey S.L., Reddy M.V., Subba Rao G.V. et al. // Chem. Mater. 2006. V. 18. № 6. 18. P. 1587.
  30. Boyle T.J., Rodriguez M.A., Ingersoll D. et al. // Chem. Mater. 2003. V. 15. № 20. P. 3903.
  31. Chen C., Hecht M.B., Kavara A. et al. // J. Am. Chem. Soc. 2015. V. 137. № 41. P. 13244.
  32. Goetz M.K., Hill E.A., Filatov A.S., Anderson J.S. // J. Am. Chem. Soc. 2018. V. 140. № 41. P. 13176.
  33. Nurdin L., Spasyuk D.M., Fairburn L. et al. // J. Am. Chem. Soc. 2018. V. 140. № 47. P. 16094.
  34. Rowsell J.L.C., Yaghi O.M. // Microporous Mesoporous Mater. 2004. V. 73. № 1–2. P. 3.
  35. Chui S.S.-Y., Lo S.M.-F., Charmant J.P.H. et al. // Science. 1999. V. 283. № 5405. P. 1148.
  36. Serre C., Mellot-Draznieks C., Surblé S. et al. // Science. 2007. V. 315. № 5820. P. 1828.
  37. Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. № 5. P. 671.
  38. Cui Y., Chen J.-T., Long D.-L. et al. // Dalton Trans. 1998. № 18. P. 2955.
  39. Cui Y., Chen G., Ren J. et al. // Inorg. Chem. 2000. V. 39. № 18. P. 4165.
  40. Bykov M.A., Emelina A.L., Orlova E.V. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 4. P. 548.
  41. Pakhmutova E.V., Malkov A.E., Mikhailova T.B. et al. // Russ. Chem. Bull. 2003. V. 52. № 10. P. 2117.
  42. Sapianik A.A., Lutsenko I.A., Kiskin M.A. et al. // Russ. Chem. Bull. 2016. V. 65. № 11. P. 2601.
  43. Kiskin M., Zorina-Tikhonova E., Kolotilov S. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 12. P. 1356.
  44. Lutsenko I.A., Kiskin M.A., Nikolaevskii S.A. et al. // ChemistrySelect. 2019. V. 4. № 48. P. 14261.
  45. Wu B. // J. Coord. Chem. 2008. V. 61. № 16. P. 2558.
  46. Wu B., Hou T. // Acta Crystallogr. E. 2010. V. 66. № 4. P. m457.
  47. Wu B., Zhao C.-X. // Acta Crystallogr. E. 2010. V. 66. № 9. P. m1075.
  48. Lu W.M., Wu J.-B., Dong N., Chun W.-G. // Acta Crystallogr. C. 1995. V. 51. № 8. P. 1568.
  49. Zhu Y., Luo F., Feng X.-F. et al. // Aust. J. Chem. 2013. V. 66. № 1. P. 75.
  50. Yambulatov D.S., Nikolaevskii S.A., Shmelev M.A. et al. // Mendeleev Commun. 2021. V. 31. № 5. P. 624.
  51. Fursova E.Yu., Kuznetsova O.V., Ovcharenko V.I. et al. // Russ. Chem. Bull. 2007. V. 56. № 9. P. 1805.
  52. Nikolaevskii S.A., Petrov P.A., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119643.
  53. Nikolaevskii S.A., Yambulatov D.S., Voronina J.K. et al. // ChemistrySelect. 2020. V. 5. № 41. P. 12829.
  54. Trieu T.N., Nguyen M.H., Abram U. et al. // Z. Anorg. Allg. Chem. 2015. V. 641. № 5. P. 863.
  55. Jesudas J.J., Pham C.T., Hagenbach A. et al. // Inorg. Chem. 2020. V. 59. № 1. P. 386.
  56. Tang Q., Sun Y., Li H.-Y. et al. // Appl. Organometal. Chem. 2019. V. 33. № 4. P. e4814.
  57. Shmelev M.A., Voronina Yu.K., Chekurova S.S. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 8. P. 551.
  58. Dobrohotova Zn.V., Sidorov A.A., Kiskin M.A. et al. // J. Solid State Chem. 2010. V. 183. № 10. P. 2475.
  59. Cheprakova E.M., Verbitskiy E.V., Kiskin M.A. et al. // Polyhedron. 2015. V. 100. P. 89.
  60. Sapianik A.A., Kiskin M.A., Kovalenko K.A. et al. // Dalton Trans. 2019. V. 48. № 11. P. 3676.
  61. Kuznetsova G.N., Nikolaevskii S.A., Yambulatov D.S. et al. // J. Struct. Chem. 2021. V. 62. № 2. P. 184.
  62. Dobrokhotova Z., Emelina A., Sidorov A. et al. // Polyhedron. 2011. V. 30. № 1. P. 132.
  63. Gol’dberg A.E., Nikolaevskii S.A., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2015. V. 41. № 12. P. 777. https://doi.org/10.1134/S1070328415120015
  64. Zorina-Tikhonova E.N., Aleksandrov G.G., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 10. P. 689. https://doi.org/10.1134/S1070328419100099

Supplementary files



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies